# 第七章 圓與橢圓偵測

# 7

# 內容

- 7.1前言
- 7.2 隨機式測圓法
- 7.3 隨機式橢圓測法
- 7.4 植基於對稱性質的圓和橢圓測法
- 7.5 視訊場景的變化偵測

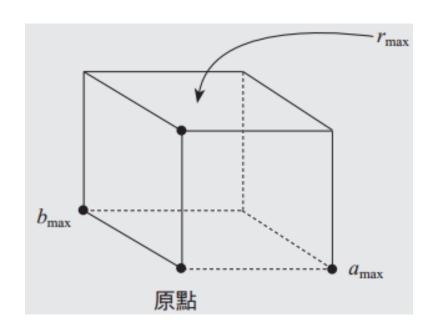


# 7.1前言

主要介紹在自動光學檢測或圖形識別中的圓型和橢圓形物件的 偵測。

# 7.2 隨機式測圓法

■ 範例1:霍氏轉換可否應用於圓偵測上?缺點為何?



解答:霍氏轉換可使用三維累積陣列來偵測圓。缺點為所花費的 記憶體空間較大以及計算時間較久。

## 7.2.1 基本想法

邊點集 $V = \{(x, y)\}$ 。圓可表示為

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$
 (7.2.1.1)

隨機的從V中挑出四點。該四點可以決定出四個可能圓,如圖

7.2.1.1所示。

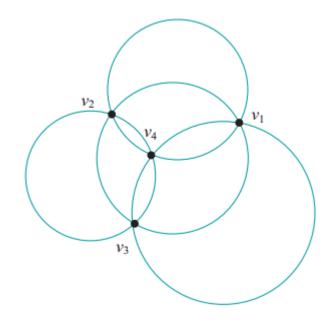


圖7.2.1.1 四點決定四個可能圓

## 7.2.2 決定候選圓

#### 圓方程式可改寫為

$$2xa + 2yb + d = x^2 + y^2 (7.2.2.1)$$

此處  $d = r^2 - a^2 - b^2$  。令  $v_i = (x_i, y_i)$ , i = 1,2,3,為被隨機挑選出來的三個邊點。假若  $v_1 \cdot v_2$  和  $v_3$  沒有共線,則它們可用來決定一可能圓  $C_{123}$  ,且可以得到圓心  $(a_{123}, b_{123})$  和半徑  $r_{123}$  。

#### ■ 圓心和半徑的求解

$$v_1 = (x_1, y_1)$$
、 $v_2 = (x_2, y_2)$  和  $v_3 = (x_3, y_3)$  代入式子(7.2.2.1)

此處 
$$d_{123} = r_{123}^2 - a_{123}^2 - b_{123}^2$$
。

#### 得圓心的解為

$$\begin{cases}
 a_{123} = \frac{\begin{vmatrix} x_2^2 + y_2^2 - (x_1^2 + y_1^2) & 2(y_2 - y_1) \\ x_3^2 + y_3^2 - (x_1^2 + y_1^2) & 2(y_3 - y_1) \end{vmatrix}}{4((x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1))} \\
b_{123} = \frac{\begin{vmatrix} 2(x_2 - x_1) & x_2^2 + y_2^2 - (x_1^2 + y_1^2) \\ 2(x_3 - x_1) & x_3^2 + y_3^2 - (x_1^2 + y_1^2) \end{vmatrix}}{4((x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1))}
\end{cases} (7.2.2.3)$$

進而解得圓半徑

$$r_{123} = \sqrt{(x_i - a_{123})^2 + (y_i - b_{123})^2}$$
 (7.2.2.4)



$$d_{4\to 123} = \sqrt{(x_4 - a_{123})^2 + (y_4 - b_{123})^2 - r_{123}}$$
 (7.2.2.5)

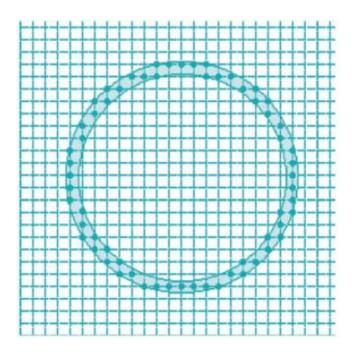


圖7.2.2.1 數位圓

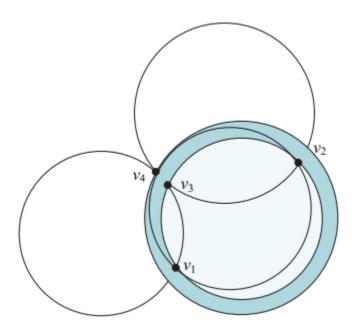


圖7.2.2.2 四個抽樣邊點在一圓



- 若距離值夠小,則 $\nu_4$  在可能圓 $C_{123}$ 上(見圖7.2.2.2); 這時可能圓升級為候選圓。
- 給四個隨機邊點  $v_i = (x_i, y_i)$ , i = 1, 2, 3, 4,這四個邊點至多造成四個可能圓。這四個可能圓需進一步檢查來決定誰是候選圓。

#### ■ 不理想的抽樣情形

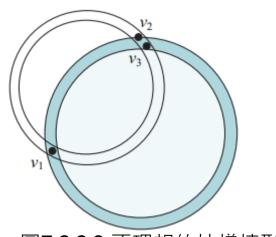


圖7.2.2.3 不理想的抽樣情形

٧

- 範例1:給定3個邊點 $V_1(5,0) \cdot V_2(3,6) \cdot V_3(6,10)$ ,在進行隨機式測圓法來決定可能圓的過程中:
  - (1)請判斷此3個邊點是否可以形成一個可能圓。
  - (2)請求出此可能圓的圓心與半徑,並詳述其計算過程。

解答: pp. 209-210.



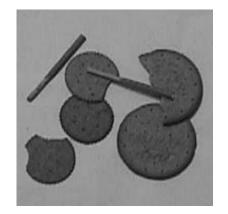
## 7.2.3 決定真正圓

- 假設三點  $v_i \cdot v_j$  和  $v_k$  決定了一個候選圓。若邊點集V中的任一邊點與候選圓夠近,則計數器C加1。繼續此投票步驟一直到所有的邊點被處理完。
- = 若 $\frac{C}{2\pi r_{ijk}}$ 大於門檻值 $T_r$ ,則候選圓升級為真正圓。否則,該候選圓為一假圓。例如 $T_r=0.8$ 表示數位圓上的邊點數需佔圓周的80%以上。

## 7.2.4 演算流程圖



(a) 錢幣影像

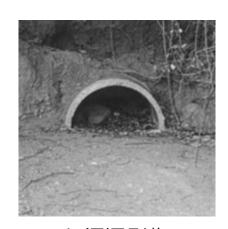


(b) 餅乾和巧克力棒影像

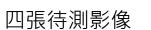


(c) 文具影像

圖7.2.4.2



(d) 渠洞影像



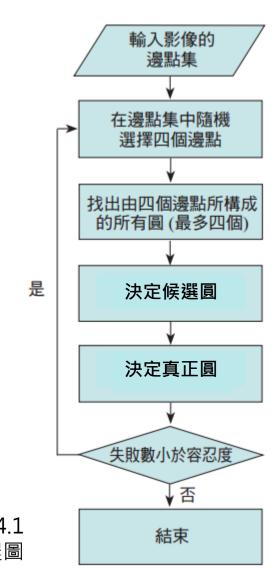
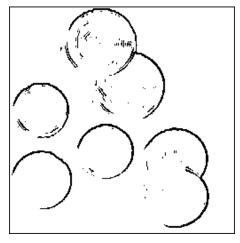
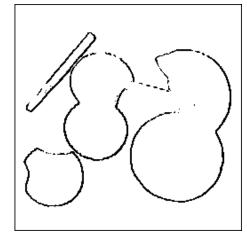


圖7.2.4.1 演算流程圖

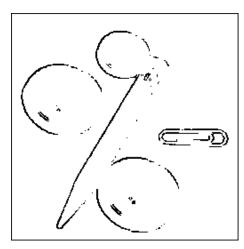




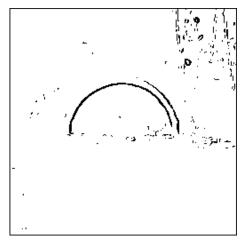
(a) 錢幣影像的邊點圖



(b) 餅乾和巧克力棒影像的邊點圖



(c) 文具影像的邊點圖



(d) 渠洞影像的邊點圖

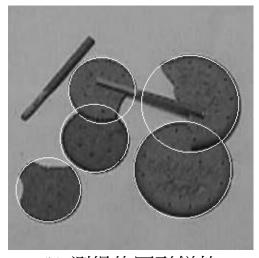
圖7.2.4.3 圖7.2.4.2的邊點圖



(a) 測得的圓形錢幣



(c) 測得的圓形文具



(b) 測得的圓形餅乾



(d) 測得的圓形渠洞



## 7.2.5 複雜度分析

■ RHT方法和RCD方法的比較

事件A的機率:

$$P[A] = \frac{m(m-1)(m-2)}{n(n-1)(n-2)}$$

事件B的機率:

$$P[B] = \frac{m(m-1)(m-2)(m-3)}{n(n-1)(n-2)(n-3)}$$

$$p = m/n$$



#### RHT機率密度函數:

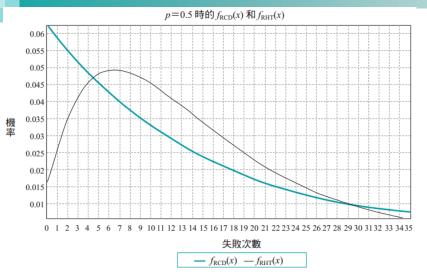
$$f_{\text{RHT}}(x) = (x+1)(1-p^3)^x(p^3)^2$$
,  $x = 0, 1, \dots$ 

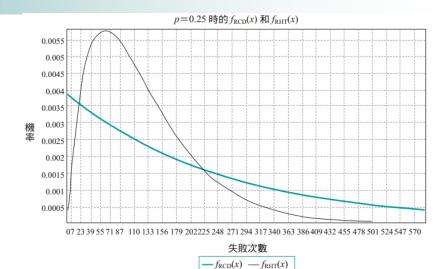
#### RCD機率密度函數:

$$f_{\text{RCD}}(x) = (1 - p^4)^x (p^4)$$
,  $x = 0, 1, \dots$ 

#### 累計分佈函數:

CDF 
$$F_{\text{RCD}}(x) = \sum_{i \le x} f_{\text{RCD}}(i)$$
  $\text{ fil } F_{\text{RHT}}(x) = \sum_{i \le x} f_{\text{RHT}}(i)$ 

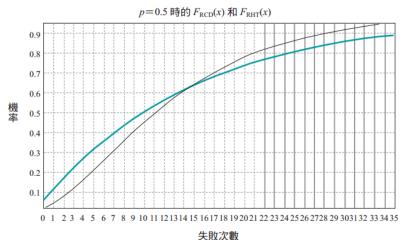


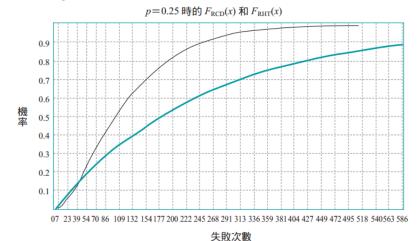


(b) p = 0.25

(a) p = 0.5

圖7.2.5.1 對兩個不同p值 ·  $f_{RCD}(x)$  和  $f_{RHT}(x)$  的比較





(a) p = 0.5

 $-F_{\text{RCD}}(x)$   $-F_{\text{RHT}}(x)$ 

(b) p = 0.25

 $-F_{\text{RCD}}(x)$   $-F_{\text{RHT}}(x)$ 

圖7.2.5.2 對兩個不同p值 ·  $F_{RCD}(x)$  和  $F_{RHT}(x)$  的比較

# 7.3 隨機式橢圓測法

## 7.3.1 橢心的決定

■ 橢圓可表示為

$$d(x-x_c)^2 + e(x-x_c)(y-y_c) + f(y-y_c)^2 = 1 (7.3.1.1)$$

上式中, $(x_c, y_c)$ 代表橢心;三個變數 $d \cdot e$ 和 f 需滿足 $d > 0 \cdot f > 0$ 和  $4df - e^2 > 0 \circ$ 

• 令橢圓的旋轉角度為 $\theta$ 且兩個軸的長度分別為a和b。則式 (7.3.1.1)中的五個變數 $(x_c, y_c, d, e, f)$ 可轉換為 $(x_c, y_c, a, b, \theta)$ :

$$\theta = \frac{\tan^{-1} \frac{e}{d - f}}{2}$$

$$a = \sqrt{\frac{1}{d\cos^2\theta + e\sin\theta\cos\theta + f\sin^2\theta}} \qquad b = \sqrt{\frac{1}{f\cos^2\theta - e\sin\theta\cos\theta + d\sin^2\theta}}$$

■ 令 $P_i = (x_i, y_i)$  , i = 1,2,3,4 , 為一個橢圓上的四個抽樣邊點。邊點 $P_i$ 上的斜率設為 $S_i$  。在這四個邊點中挑選任意二個邊點,令這二個邊點為 $p_i$ 和 $p_j$ 且假設它們的切線斜率不為平行;令兩切線的交點為 $T_{ij} = (t_{x_{ij}}, t_{y_{ij}})$  。 $M_{ij} = (m_{x_{ij}}, m_{y_{ij}})$ 為線段 $\overline{P_iP_j}$ 的中點:

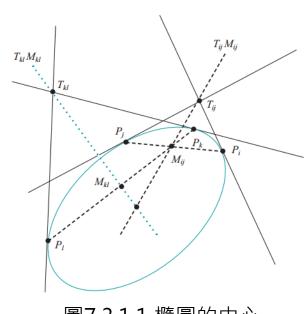


圖7.3.1.1 橢圓的中心

$$m_{x_{ij}} = \frac{x_i + x_j}{2}$$

$$m_{y_{ij}} = \frac{y_i + y_j}{2}$$

$$t_{x_{ij}} = \frac{y_i - y_j - s_i x_i + s_j x_j}{s_j - s_i}$$

$$t_{y_{ij}} = \frac{s_i s_j (x_j - x_i) - y_j s_i + y_i s_j}{s_j - s_i}$$
(7.3.1.2)

■ 即連接 $T_{ij}$ 和 $M_{ij}$ 的直線會通過橢心。這條直線可表示為

$$(t_{x_{ij}} - m_{x_{ij}})y - (t_{y_{ij}} - m_{y_{ij}})x = t_{x_{ij}}m_{y_{ij}} - m_{x_{ij}}t_{y_{ij}}$$
(7.3.1.3)



■ 令剩餘的兩個邊點為  $P_k$  和  $P_l$  ,我們可得  $M_{kl} = (m_{x_{kl}}, m_{y_{kl}})$  和  $T_{kl} = (t_{x_{kl}}, t_{y_{kl}})$  。如圖7.3.1.1所示, $T_{ij}$  和  $M_{ij}$  形成的直線為

$$(t_{x_{kl}} - m_{x_{kl}})y - (t_{y_{kl}} - m_{y_{kl}})x = t_{x_{kl}}m_{y_{kl}} - m_{x_{kl}}t_{y_{kl}}$$
(7.3.1.4)

利用式子(7.3.1.3)和式子(7.3.1.4)的二個聯立方程式可解出橢心為

$$x_{c} = \frac{(t_{x_{ij}} m_{y_{ij}} - m_{x_{ij}} t_{y_{ij}})(t_{x_{kl}} - m_{x_{kl}}) - (t_{x_{kl}} m_{y_{kl}} - m_{x_{kl}} t_{y_{kl}})(t_{x_{ij}} - m_{x_{ij}})}{(t_{x_{ij}} - m_{x_{ij}})(t_{y_{kl}} - m_{y_{kl}}) - (t_{x_{kl}} - m_{x_{kl}})(t_{y_{ij}} - m_{y_{ij}})}$$

$$y_{c} = \frac{(t_{x_{ij}} m_{y_{ij}} - m_{x_{ij}} t_{y_{ij}})(t_{y_{kl}} - m_{y_{kl}}) - (t_{x_{kl}} m_{y_{kl}} - m_{x_{kl}} t_{y_{kl}})(t_{y_{ij}} - m_{y_{ij}})}{(t_{x_{ij}} - m_{x_{ij}})(t_{y_{kl}} - m_{y_{kl}}) - (t_{x_{kl}} - m_{x_{kl}})(t_{y_{ij}} - m_{y_{ij}})}$$

■ 隨機選四個邊點, $P_1$ 、 $P_2$ 、 $P_3$ 和 $P_4$ ,所以共有 三種組合方式 ( $P_1P_2$ , $P_3P_4$ )、( $P_1P_3$ , $P_2P_4$ )和 ( $P_1P_4$ , $P_2P_3$ ) 可以幫助我們求得三個可能的橢心。

## 7.3.2 決定剩餘的三個變數

■ 假設之前的橢心為 $(x_c, y_c)$ ,將原點移至橢心上。橢圓方程式可簡 化為

$$dx^2 + exy + fy^2 = 1$$

■ 利用挑選出來的四個邊點中的三個邊點即可解出(d,e,f)。將邊點 $(x_i',y_i')$ 代入上面式子中可得下列線性系統

$$\begin{pmatrix} x'_{i}^{2} & x'_{i} y'_{i} & y'_{i}^{2} \\ x'_{j}^{2} & x'_{j} y'_{j} & y'_{j}^{2} \\ x'_{k}^{2} & x'_{k} y'_{k} & y'_{k}^{2} \end{pmatrix} \begin{pmatrix} d \\ e \\ f \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

■ 這裡需注意的是 $(x_i', y_i')$ 為邊點 $(x_i', y_i')$ 經過平移 $(x_c, y_c)$ 後的座標。從組合的觀點,共可解出四組 $(x_i, y_i)$ 解。

# м

## 7.3.3 決定候選橢圓

- 針對解出的四組(d,e,f),我們進一步檢查其是否滿足 $d>0 \cdot f>0$  和  $4df-e^2>0$ 。若是,則對應的橢圓為一合法的可能橢圓。
- 若某一組係數  $(x_c, y_c, d, e, f)$  代表一合法的可能橢圓,則該橢圓可否被選為橢圓候選人,接著對一開始選出的四個邊點進行投票的動作。
- 若四個邊點與橢圓的距離皆小於門檻值,我們就說這可能橢圓為一候選橢圓。這裡的邊點與橢圓的距離計算公式如下

$$\left| d(x_i - x_c)^2 + e(x_i - x_c)(y_i - y_c) + f(y_i - y_c)^2 - 1 \right|$$
 (7.3.3.1)

# M

### 7.3.4 決定真正橢圓

- 如果有足夠的邊點位於該候選橢圓上,則該候選橢圓升級為真 正橢圓。
- 橢圓的周長簡易估計 令橢圓的長軸為2a,而短軸為2b,則外接的長方形之周長為4a+4b而內接的菱形之周長為4 $\sqrt{a^2+b^2}$ 。橢圓的周長可估計為外接長方形周長加上內接菱形周長的一半,即  $2(a+b)+2\sqrt{a^2+b^2}$ 。

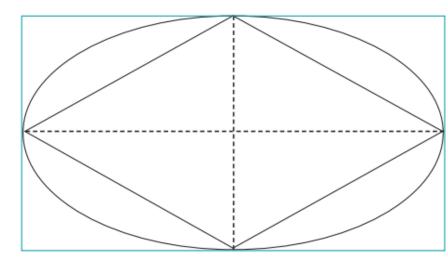
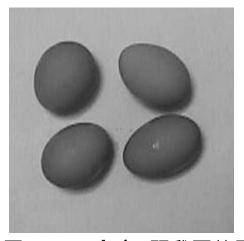


圖7.3.4.1 橢圓周長的估計

## 7.3.5 演算流程圖



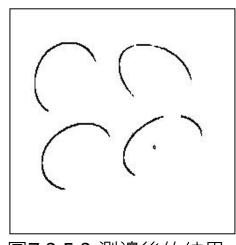


圖7.3.5.2 內含4顆雞蛋的影像 圖7.3.5.3 測邊後的結果

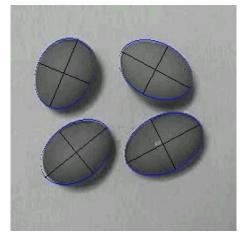


圖7.3.5.4 偵測到的橢圓

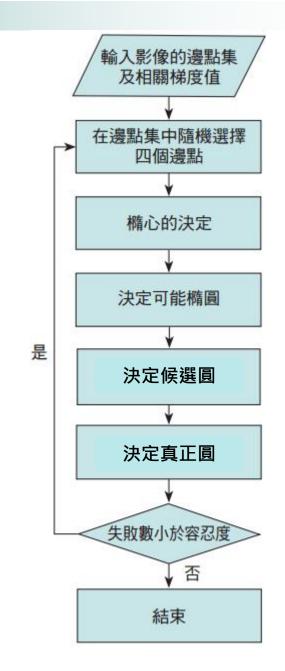


圖7.3.5.1演算流程圖

# 7.4 植基於對稱性質的圓和橢圓測法

• 令候選圓的圓心為 (x,y),半徑為r, $(r,\theta+\frac{\pi}{36})$ 和 $(r,\theta-\frac{\pi}{36})$ 分別表示矩形  $B_1$ 的左上角及右下角的極座標,如圖 7.4.1 所示。令 $V_i$ 表示包含於矩形 $B_i$ 内的邊點集,i=1,2,3,4,邊點標示為三角形。這裡必須確保在矩形內的邊點數大於門檻值而成為有效邊點集,門檻值為 $(0.6)r(\frac{2\pi}{36})$ , $r(\frac{2\pi}{36})$ 代表被矩形所框住的弧長。

 $B_2$   $V_2$   $V_1$   $V_3$   $V_4$   $V_3$ 

圖7.4.1 用來檢測對稱性質的邊點集

- 參數 $\theta$ 的決定取決於找到兩個以上的有效邊點集。為了讓四個矩形 均勻分佈於圓周上,我們依序找尋 $\theta$ 如下: $\pi/4$ ,  $\pi/4 + \Delta$ ,  $\pi/4 - \Delta$ ,  $\pi/4 + 2\Delta$ ,  $\pi/4 - 4\Delta$ ,這裡 $\Delta = \pi/18$ 。
- 找出兩個以上的有效邊點集後,任取兩個有效邊點集 $(V_k, V_l)$ , k < l計算對稱程度。首先,將 $V_l$ 內所有的邊點,基於與 $V_k$ 之間的 對稱關係作鏡射轉換,轉換後的邊點集標示為  $\tilde{V}_l$ ,接著,利用 $V_k$  與  $\tilde{V}_l$ 之間的 Hausdorff 距離計算對稱程度:

$$\begin{split} H(V_k, \tilde{V_l}) &= \max(h(V_k, \tilde{V_l}), h(\tilde{V}_l, V_k)) \\ h(V_k, \tilde{V_l}) &= \max_{p \in V_k} \min_{q \in \tilde{V_l}} (\left\| p - q \right\|) \end{split}$$

若在所有的有效邊點集中,存在兩個有效邊點集之間的對稱程度 大於門檻值,則此候選圓才會進一步做投票動作判斷是否為真正 圓。



# 7.5 視訊場景的變化偵測

■ 場景的變化主要根據線、圓和橢圓之間的交點集與連續畫面間的差異距離。

# м

#### ■ Hausdorff 距離

我們求出形狀之間的所有交點以為影像的代表點集。假設某影像的代表點集為 $A = \{a_1, a_2, \cdots, a_m\}$ 而下一張影像的代表點集為 $B = \{b_1, b_2, \cdots, b_m\}$ , $A \cap B$ 的距離可表示為 $B \cap B$  出来的。

$$H(A, B) = \max(h(A, B), h(B, A))$$

這裡  $h(A,B) = \max_{a \in A} \min_{b \in B} ||a - b||$ 。

■ 部份Hausdorff 距離(為避免雜訊的干擾)

部分Hausdorff距離度量定義為

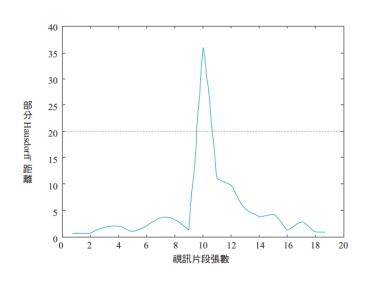
$$H_{LK}(A,B) = \max(h_L(A,B), h_K(B,A))$$

我們選定 $L = K = f_1 m \overline{\cap} f_1 = 0.9$ ;  $h_K(B, A) = K_{b \in B}^{th} min ||a - b||$ 是 選第k大的而非h(A, B)中的最大的。

若部份Hausdorff距離大於所設定的門檻值,則代表二張影像內的代表點有大的移位,這時我們認為有場景的變化存在。

#### ■ 一個例子

視訊的內容為一個籃球在地板上滾動的情形。在圖中,我們可看出 視訊中,第九張影像到第十張影像有場景變化。



(a) 第一個場景的起頭

(b) 第二個場景的起頭

圖7.5.1 視訊中的部份Hausdorff距離

圖7.5.2 二個場景的起頭影像