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Part 49: Measuring Phase Difference—Part V:
Phase Calculations

REVIEW AND PURPOSE

An optical solution to the Dirichlet
Problem: Fringe pattern showing
electro-optic birefringence in a
hollow disc containing a solution of
milling yellow excited by a voltage
applied across a diameter and
viewed in a circular polariscope
under sodium light. The fringes
provide an analog solution to the
LaPlace equation for a disc in
diametral compression and so yield
the sum of the principal stresses for
use in stress separation. Photo by
Dr. G. L. Cloud at Michigan State
University, ca. 1966, scanned and
color adjusted 2011.

This article:
• describes two methods to con-

vert raw phase-stepping results to
modulo 2π ,

• tells how to construct a wrapped
phase difference map,

• explores the relationships between
fringe patterns and wrapped phase
maps,

• suggests how to unwrap the phase
data to complete the experiment.

The previous article in this series derived the equations for using phase stepping
to determine the phase difference between two interfering waves as they arrive
at a given sensor. Of the several possible approaches, only the common three-step
and four-step techniques were developed. The result, when applied through an
array of sensors, is a numerical map of phase difference over the entire optical
field. As was noted, however, the answers are not complete in that they contain
some ambiguities that require attention.

This article first explains how to utilize the signs that appear in the phase-
stepping computation to establish the correct value of the phase angle to modulo
2π . An alternative approach using the atan2 function is then explored. This
procedure directly yields what is called a ‘‘wrapped’’ phase difference map.
For certain applications, this single result is sufficient. For most experimental
mechanics applications, the meaningful wrapped map must be extracted by
subtracting an initial phase map from the final one. The relationships between
true fringe patterns and phase difference maps are explained, and the resulting
insights lead to the mechanism for unwrapping the phase map to complete the
solution for the interferometric experiment.

THE PROBLEMS
Given the nature of the arctangent function appearing in either equation 48.7
(3-step technique) or equation 48.13 (four-step technique) of Part 48 gives the
phase difference only to modulo π , which is not sufficient information. To belabor
the point, suppose that tan φ = 1. Recall the shape of the tangent graph. We do
not know whether the phase angle is 45◦ (first quadrant) or 180◦ + 45◦ = 225◦,
(third quadrant), and we must figure out which it is. Stated another way, we
must convert the calculated phase from modulo π (φ lies between 0◦ and 180◦)
to modulo 2π (φ ranges from 0◦ to 360◦). Furthermore, the correct phase might
actually be this corrected angle plus or minus some multiple of 360◦.

Two ambiguities must be eliminated
in order to utilize the data from
phase-stepping interferometry, namely:

• The phase differences are known
only to modulo π ,

◦ we do not know in which
quadrant the true result lies.

• We do not know how many mul-
tiples of 2π must be added to the
measured phase difference.

You should recognize these two separate issues. They were mentioned in the
second article of this series and several times since, with a detailed discussion
appearing in Part 45. There, the exposition was in terms of fractional fringe
order and nearest whole fringe order, but the two problems currently at hand
are identical except for terminology. We study here two techniques to convert the
calculated phase angle from modulo π to modulo 2π , that is, to place the phase
difference in the correct quadrant (the fractional fringe order). Subsequently
some thought is given to the problem of eliminating the 2π phase difference
boundaries.

To refine the data so that it is useful, we
must:

• convert all the values to modulo
2π ,

• eliminate the 2π boundaries to
get the complete phase difference
profile.
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CORRECTING THE PHASE DIFFERENCE USING A TABLE
There are various ways to attend to the modulo π problem, with the choice
depending on preference, programming skill, and software available. We assume
here that the four-step technique is being implemented, but the instructions
apply equally for the three-step approach.

A direct path to determination of the phase difference to modulo 2π for each set of
detector readings is handled by examining the signs in the numerator and denom-
inator of equation 48.13. First, calculate the phase difference to modulo π/2 by
using only the absolute values of the differences in the numerator and denomi-
nator of that equation. The result will be an angle between 0 and π/2. Then, the
signs of the intensity differences in the numerator and the denominator are used
to determine the correction factor that must be added or subtracted from the cal-
culated angle to put the phase difference into the correct quadrant between 0 and
2π . A table based on the shape of the tangent function appears below. It provides
a quick way to find the correction factor and the range of phase difference values
for all possible combinations of signs, including the special ones where either
numerator or denominator are zero. Note the indeterminate situation that arises
when the numerator is zero, a problem that will be dealt with presently. This table
can be inserted into the phase calculation software and used as a look-up table.

In the direct look-up-table method:
• Only absolute values are used

to calculate the phase difference
to modulo π/2 from the arctan-
gent function derived for phase-
stepping,

• A table is used to interpret the signs
of numerator and denominator of
the arctangent function to place
the phase difference in the correct
quadrant modulo 2π .

Numerator
Sin φ

Denominator
Cos φ Quadrant

Range of
phase values

Corrected
phase

Positive Positive 1 0 to π /2 φ

Positive Negative 2 π /2 to π π − φ

Negative Negative 3 π to 3π /2 π + φ

Negative Positive 4 3π /2 to 2π 2 π − φ

Zero Any value — 0 or π 0 or π

Positive Zero — π /2 π /2

Negative Zero — 3π /2 3π /2

CORRECTING THE PHASE DIFFERENCE USING
COMMERCIAL SOFTWARE
A speedy approach for clearing the modulo π ambiguity is to utilize the
‘‘atan2(y,x)’’ function that is available in commercially available software such as
MATLAB®, FORTRAN® and C®, to name only three. Use of these software
packages means that a routine to capture data, control the phase shifter,
determine phase difference, and plot the results can be set up with only a
few lines of code. Be warned that the specifications for the atan2 function vary
across the spectrum of packages. In the usual form, the (x,y) arguments, which
are the numerator and denominator respectively in equation 48.13, are entered
in order that is contrary to the practice that was taught us in high school. Also,
the function returns phase angles ranging from −π to +π . This issue can be
accommodated easily in your phase measurement routine if it seems awkward.
One direct approach is to simply add 2π to any negative values if you, like many
of us elderly gents, want phase angles to start from zero and go around the unit
circle with the positive direction being counter-clockwise. Note that atan2(0,0) is
undefined, and such data yielded by a sensor must be excluded as invalid.

A convenient way to eliminate the π
ambiguity is to use the atan2(y,x)
function that is contained in most
commercial software packages.

• Care is required because this func-
tion is not uniform across software.

EXPLOITATION OF THE PHASE DATA
At this point, we have at hand a complete array of relative phase to modulo 2π
at each sensor used in the interferometric experiment. The next steps depend to
some extent on application and the form of sought-after results. The applications
can be conveniently divided into two distinct categories, as follows:

Case 1—in which the phase differences vary smoothly and we need not consider
a change of specimen state

Suppose that the experiment involves any one of several variations of Michelson
interferometry (see Part 8), Newton’s rings (see Part 5), photoelasticity (Parts
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29–43), various Moiré implementations (Parts 18–23), or similar procedures
where, (1) the initial phase difference over the field is zero or constant, and
(2) the final phase difference distribution varies smoothly. An example of such a
result appears as the lead photograph in Part 47. If phase-stepping interferometry
were applied to this case, the result would be an exhibit of phase difference angles
that oscillate in a ramped or saw-tooth fashion between 0 and 2π with a sharp
jump back to zero at each 2π boundary.

In this case, the only remaining step is to perform phase unwrapping to rid the
result of the breaks at the 2π boundaries, which, as mentioned, is analogous to
establishing the correct whole fringe order.

Use of the phase difference data depends
on applications, which are divided into
two general cases.

• If the phase difference distribution
is smooth and the starting values
were zero or constant, then the data
can be used directly.

• If the starting phase differences
are not constant, then initial and
final phase data must be recorded
and the initial results subtracted
from the final to obtain the change
of phase difference during the
experiment.

Case 2—in which the phase differences vary randomly or the initial values are
not zero or constant

In many experiments, we are interested only in the change in the state of the
specimen as the experiment progresses. For example, we might want the stresses
or deformations in a structure as a load is applied. We cannot set the initial
phase differences to zero or a constant, or we do not want to bother doing so.
A particularly sharp example appears in all forms of speckle interferometry,
where the phase differences vary randomly over the field. Such a result is shown
in the left-hand portion of the lead photo of Part 48. No sense can be made of
such a phase difference map. It is useless as it stands. Even in photoelasticity
or Michelson procedures, the initial phase difference data might not be well-
behaved, and we are probably only interested in the change of phase difference
between two specimen states.

This category of experiments requires that two sets of phase difference data
be developed through phase stepping, one for the initial state of the specimen
and one for the final state. The initial phase difference is subtracted from the final
one, pixel-by-pixel, to obtain the change of phase difference, �φ, that occurred
during the experiment. For mechanics applications where the displacements vary
smoothly, this change-of-phase-difference data will vary smoothly over the field
regardless of the rough nature of the initial values. Such an outcome is apparent
in the right-hand portion of the lead photo of Part 48, even without filtering or
smoothing the result.

PHASE DIFFERENCE MAPS
Usually in an experiment, it is necessary or at least satisfying to create a picture
of the phase difference distribution over the entire optical field. That we can do so
easily is one of the many advantages of optical techniques. One useful chart that
we are now in a position to construct is a map of the phase difference modulo 2π . To create a useful picture of the

wrapped phase difference, assign colors
or gray scale to the phase difference
values in the array and plot them at the
coordinates of the sensors in specimen
space.

• If in gray scale, sharp black-white
breaks will delineate the 2π phase
boundaries.

• The display resembles an inter-
ference fringe pattern where the
phase boundaries correspond to the
whole-order fringes.

• Phase difference maps should not
be called ‘‘fringe patterns.’’

To obtain such a picture, arbitrarily assign colors or gray levels to values of phase
difference, e.g. a linear variation ranging from white for zero phase difference
to black for 2π relative phase. Plot the color or gray value for each sensor as a
function of its coordinates in specimen space. The result is a map of phase differ-
ence distribution for the entire specimen. The gray-scale representation of phase
difference distribution takes on a saw-tooth profile wherein the sharp black-
white breaks correspond to the 2π boundaries. These boundaries correspond to
the centers of whole-order interference fringes had they been obtained as part
of the experiment. This pictorial representation is a ‘‘wrapped phase difference
map,’’ often called a ‘‘phase map’’ for short. A real result from speckle interferome-
try appeared as the lead photograph of Part 45. Such computer-generated pictures
are often called fringe patterns because of the obvious similarities, but they are
not interference patterns in the true sense. Use of that terminology is misleading.

RELATING PHASE PROFILES TO INTERFERENCE
FRINGES
While not essential to understanding and using phase-stepping, it might be
instructive to explore further the correlations between fringe patterns and phase
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maps. The photograph at the head of this article shows an unusual and previously
unpublished light-field interference fringe pattern resulting from electro-optic
birefringence in a fluid that is contained in a hollow disc and excited by a voltage
difference across the poles. The disc was studied in an ordinary polariscope. As
in other forms of ‘‘photoelasticity,’’ we can view the pattern as a map of phase
difference caused by relative retardation, which in this case is proportional to
voltage gradient. If the phase differences were obtained by phase stepping as
explained above, the result could be made to match the photograph by assigning
the appropriate gray level to each numerical value of phase angle. Seldom is the
effort worth the while, because tracking and counting fringes are no longer
necessary. The relative retardations are now represented by numbers in an
array. We do not need to even mention fringe orders any more.

As an exercise, draw on your acquired insight to infer what the wrapped phase
difference map for the fluid-filled disc would look like. Rather than do that here,
let us settle for a qualitative sketch of the variation of phase difference along
the diameter of the disc, starting arbitrarily at one pole and progressing to the
center. The result is shown in the figure below.

The fringe pattern in an electro-optic
birefringent fluid is used to explore the
relationships between interference
fringes and wrapped phase difference
maps.

• Any interference fringe pattern can
be viewed as a phase difference
map.

• But, the phase data are now in a
numerical array.

• We do not need to track and count
fringe orders any more.

• Our insight allows us to infer the
saw-tooth appearance of a phase-
difference map that corresponds to
the fringe pattern.

• This exercise leads to clues as
to how to determine the complete
unwrapped phase difference map.

• Phase unwrapping is analogous
to fringe counting in analog
interferometry.

CLUES TO THE TOTAL SOLUTION
Note that the sharp breaks in the graph correspond to the centers of the whole-
order fringes (the BRIGHT ones) in the photograph, as mentioned above. We do
not know how to order the segments, and we do not know where zero is, so we
cannot know yet what the total phase difference is at any point. These are the
same problems we have faced in all breeds of interferometry. On the positive
side, we now have precise values for the phase difference modulo 2π at each
pixel in the entire specimen, something we cannot obtain through fringe counting
and interpolation. We also know that the phase distribution must be smooth,
except at cracks, edges, or other singularities. The 2π jumps must be eliminated.
The shape of the line does suggest how to unwrap (unfold) this wrapped
(or folded) result to obtain complete knowledge of the distribution of relative
retardation along the chosen axis. How about we just move successive segments
up and place them end-to-end? Correct! Essentially, that is all there is to phase
unwrapping. It is entirely analogous to fringe counting and plotting in analog
interferometry.

Phase unwrapping to complete the
experiment requires that we:

• establish a known starting point in
specimen space,

• unwrap the graph of phase dif-
ference versus distance from the
starting point to eliminate the 2π
breaks along a given cross section
of the specimen,

• repeat the process for all cross
sections.

If we can establish a known starting point in specimen space, if we can unwrap
the graph to eliminate the 2π breaks, and if we can repeat the process for all
cross sections of the specimen, then the entire full-field solution is in hand. The
computer furnishes the labor. Further, the solution is precise in both spatial
location and change of phase difference.

WHAT LIES AHEAD The next article in this series will:
• demonstrate phase-difference un-

wrapping using an actual example,
• outline the conversion of change

of phase difference to mechanical
displacement.

The next article in this series will deal with the final step in phase-stepping
interferometry by demonstrating phase-difference unwrapping using an actual
example. The conversion of change of phase difference to mechanical displacement
will also be discussed for the simplest case. �
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