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Part 48: Measuring Phase Difference—Part |V:
Phase-Stepping Algorithms

REVIEW AND PURPOSE

The previous three articles in this series laid the groundwork for completely
mapping interferometric phase difference through the use of only intensity
measurements. Part 45 formulated the problem for ideal and non-ideal
interference and described the ambiguities that must be faced. Part 46 examined
the compensation technique, which is the forerunner of computer-based phase
mapping. Part 47 described a simple interferometric system that incorporates a
phase shifter, intensity detectors, and a computer.

This article and the next one explain how to perform whole-field phase-stepping
interferometry by showing what measurements are needed and what is done
with them. The equations required for two of several possible methods of data
reduction as well as a metric for judging data validity are derived.

SUMMARY OF PROCEDURE

Description of the data acquisition and reduction processes for phase-shifting
interferometery will be spread over two articles. Confusion might be diminished
and continuity cemented if the steps required are enumerated up front.
Determination of the phase difference profile over the optical field necessitates
the following steps:

=

record and store an intensity map for each of three or more phase steps,

2. perform the required phase difference calculations for each detector (pixel)
in the field,

3. eliminate ambiguities and adjust the calculated phase difference to

modulo 27,

remove the 27 limitation to obtain the final correct phase difference,

store and display the results.

Ot

Steps 3 and 4 of the list will be described in the next article. Already, you will
perceive that mapping phase difference requires significant data acquisition and
computational capability. You can do it by hand for one detector or a few, of
course, as described in Part 46. Otherwise, as mentioned in Part 47, the process
is automated by exploiting an electronic camera and a computer. By modern
standards, only minimal computer power is enough.

A NOTATION CHANGE

Now that the distinctions between absolute phase, relative phase or phase
difference (the difference between optical path lengths in radian units that we
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Left: Enlarged portion of a
false-color phase difference map
obtained from phase-stepping
speckle interferometry applied to a
beam. The phase difference varies
randomly between speckles
(pixels). Right: Corresponding map
of the change of phase difference
obtained by subtracting the initial
phase difference from the final,
pixel-by-pixel. The phase difference
changed by one wavelength
between the upper and lower blue
regions as the beam was loaded.
These results have not been
filtered or smoothed. Digital maps
courtesy of Dr. Gaetano Restivo of
Michigan State University, 2011.

This article:

e describes the steps to perform
whole-field phase-stepping inter-
ferometry,

e develops the equations for two
methods of data reduction.

Determination of the phase difference
profile over the optical field necessitates
the following steps:
e record intensity maps for three or
more phase steps,
e perform phase difference calcula-
tions for each detector in the array,
e eliminate ambiguities and adjust
the calculated phase difference to
modulo 27,
e remove the 27 limitation to obtain
the final correct phase difference,
e store and display the results.
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have called §¢), and the change of phase difference (change of path length
difference) are understood, the mathematical notation that was used earlier can
be simplified. From this point onward, ¢ is used to represent the phase difference
between the interfering waves at a point in the detector array. A¢ will be used
later to identify the change of phase difference, which is the quantity usually
needed to calculate the change of specimen state (e.g. displacement) that occurs
during an experiment.

STARTING POINT AND DEFINITIONS

Methods of calculating phase difference at each detector location from intensity
measurements can begin with any one of equations 45.7 through 45.11, as derived
in Part 45. For convenience, and to match the forms usually given in research
papers, begin with the expression in eqn. 45.11, reproduced here with the notation
changed as mentioned above,

_ I'max + Imin + Imax — Imin (48.1)

I 5 3 cos ¢

Drop the subscript on the left-hand side and remember that 7 is the total
intensity at a particular detector location. Additional physical insight and utility
are gained if this equation for the total intensity at the detector is modified to the

following form,
Imax + Imin Imax - Imin
I = 1+ cos (48.2)
2 |: (Imax + 1m1'n> ¢]

The first expression on the right is the average intensity, as explained earlier,
so call it I,, from now on. The multiplier of cos¢ inside the brackets is the
ratio of the intensity oscillation to the average intensity. It seems to be a signal-
to-noise figure that tells us the degree to which the intensity variations differ
from the background intensity. When observing interference fringes by eye or
when photographing them, this parameter tells us whether or not the fringes
can be clearly seen, so it is called “fringe visibility.” In electronic detection or in
communications applications, this quantity is the “intensity modulation,” and we
will label it 7,. Calculation of the modulation in an experiment is useful, indeed
necessary, in order to decide if a measured phase difference is valid. With these
changes in place, the output of the detector at coordinates (x, y) in the detector
array takes the form,

I(x,y) = Lo (x, Y)[1+ I, (x, y) cos (x, y)] (48.3)

In the following development of algorithms, the coordinate specifier (x, y) will be
dropped for brevity. Please do not forget that the calculations must be performed
for each and every detector in the array in order to map the phase difference over
the field.

Ashasbeen pointed out several times, any form of the intensity-phase relationship
contains three unknowns, so at least three intensity observations are required
to obtain the desired phase difference ¢ at each detector. In equation 48.3, the
unknowns are I, I,, and ¢, the latter two being of most interest.

APPROACH AND ASSUMPTIONS

Many approaches and algorithms have been implemented for determining phase
difference using intensity measurements and phase shifting or phase stepping.
Only two of the most basic and most useful are described here. At the start,
attention is confined to discrete phase stepping, meaning that known increments
of phase difference are imposed via the phase shifter. After each step, the shifter
device completely stops so that an intensity map for that step can be recorded.
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From this point onward, ¢ is used to
represent the phase difference between
the interfering waves at a point in the
detector array. A¢ will be used later to
identify the change of phase difference.

The intensity at a detector = average
intensity(1 + modulation times cosine of
the phase difference).

The unknowns are:
e the average intensity,
o the intensity modulation,
e the phase difference.
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This procedure requires that the phase shifter is calibrated in advance, or else
some means of measuring the phase shifts on the fly must be provided. The need
to stop and start the phase shifter tends to slow the data acquisition, but the
discrete stepping approach is the easiest of the alternatives to understand. It gives
quality results, and the phase stepping, intensity recording, and calculations can
even be done by hand in elementary experiments that demonstrate validity and
utility. A more sophisticated method, to be described in a later article, averages
the intensities while phase shifts are occurring. These techniques are quicker,
because phase shifter motion is continuous. We will find that the data processing
algorithms are identical to those discussed below for phase stepping, except that
the form of the modulation function is slightly more complicated.

For the time being, sampling requirements are ignored. Assume that sufficient
detectors are in place and the detectors are small enough so that the intensity
variations over the field can be accurately mapped. Also, assume that the time
resolution is good enough to accommodate any important dynamic phenomena in
the experiment.

THREE-STEP TECHNIQUE

An algorithm using three discrete phase steps demonstrates that the phase
difference can, indeed, be obtained with only three measurements. The technique
is easy to implement, and it works very well for most applications.

Start with equation 48.3, but, somewhat oddly, we find that the math is simpler
if we do not use the intensity at zero phase shift. Instead, take intensity readings
from the array of detectors for total phase steps of 7 /4, 37 /4, and 57 /4. The
intensities recorded for this series of phase steps will be,

L =1y [1 + I, cos (qb + %)]

Io = Iy [1 + I, cos (d) + 3%)} (48.4)

5
I3 = Iy [1 + I, cos <¢ + T>:|

Use the identity for the cosine of the sum of two angles, evaluate the sine and
cosine of the phase step terms, then tidy up to obtain,

I 2
L=1,|[1+ %IU(—}—cos«i) — sin ¢)

L =1,|1+ ?lv(— cos ¢ — sin ¢) (48.5)

2
Is =1y |1+ glv(— €os ¢ + sin ¢)

Now, calculate the following differences,

I — Iy = V21,1, cos ¢ (48.6)
Is — Iy = /21,1, sin ¢

Divide equals by equals and use the common identity for tangent to obtain,

i I3 — I
¢ = arctan [m] = arctan |: 3 2] (48.7)
cos ¢ I — Iy

We see that, indeed, the phase difference can be obtained from the three intensity
measurements. Recall that this calculation is carried out for every detector in the

Assume that:

o the phase shifter is calibrated,

e the phase shifts are applied in
known discrete steps (phase step-
ping),

e the phase shifter is stopped at
each step while intensity data are
recorded.

In the three-step technique, intensity
maps are recorded for phase steps of
/4, 3 /4, and 5w /4. I, Iy, and I3 are
the intensities recorded at any specific
detector for these three phase steps.

At each detector, the phase difference is
found to be the arctangent of the ratio
(Is = I2)/ (I1 — I2).
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array. Two problems remain. We still do not know which cycle of the intensity
curve we are on, and the tangent calculation leaves us wondering which quadrant
we are in. Set these ambiguities aside for awhile. We said that the modulation is
needed in order to judge the quality of the measurement. Compute it by squaring
equations 48.6.

(I — I5)? = 212,12 cos® ¢ (48.8)
(I3 — Ip)* = 212, 1% sin® ¢

Add these two equations, use the obvious identity, and sort to obtain the
modulation metric,

V= B+ I3 — )?
B 214

I, (48.9)

This modulation result contains the average intensity, so use parts of equations
48.5 again to find out what it is, with the result being,

I+ 13
2

(48.10)

Iy =

This interesting result suggests that the average intensity can be obtained
directly from any two measurements at phase steps that are 180° apart. You
could have guessed this useful fact from examination of the graphs in Part 45.
Now, combine equations 48.9 and 48.10 to obtain the modulation in terms of the
specific set of intensities recorded by the detector.

V= B+ (I3 — )?
L+13

I, (48.11)

In summary, so far, we have completely mapped the phase difference and obtained
information about the significance of the data from three intensity maps taken
at specific phase steps. Before attending to the ambiguities mentioned above,
consider another stepping technique that has considerable merit.

FOUR-STEP TECHNIQUE

A technique that uses four equal phase steps has certain advantages over the
three-step implementation, and it is widely used. In this case, the initial intensity
at zero phase step is used along with three others at 7/2 increments, meaning
intensity maps are recorded at phase steps of 0, 7/2, =, and 37 /2. Substitute
these values into equation 48.3 to establish the starting point,

Iy = I [1+ I, cos ¢l
bid
Io = I, [1 41, cos (¢ n E)]
I3 = I, [1+ 1, cos(¢p + 7)) (48.12)

3
Iy = Iy, |:1 + I, cos <¢ + 7):|

Solution of these equations parallels that for the three-step technique except that
it is actually simpler. The result for the phase difference at each detector is,

¢ = arctan [%] = arctan [14 — 12] (48.13)
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The arctangent function yields the
phase difference modulo 7, meaning
that we do not know for sure in which
quadrant the correct value lies. This
ambiguity must be eliminated.

The modulation metric is also obtained
in terms of the intensity data.

For the four-step technique, intensity
maps are recorded at phase steps of 0,
/2, 7, and 37w /2. The recorded
intensities at each detector are I;
through Iy.

At each detector, the phase difference is
found to be the arctangent of the ratio
(Iy — 1)/ (I; — I3).
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The average intensity in terms of the intensity readings is,

h+3y b+

Iav = 9 9

(48.14)

And, the modulation in terms of the intensity measurements turns out to be,

V=15 + (= 1) V(h — 1)+ (s = )?

I, =
v I+ I3 I + 1y

(48.15)

Notice that, because four intensity maps were recorded when only three were
required, some redundancies appear in the equations for average intensity and
modulation, and these are useful for crosschecking.

WHAT IS NEXT?

The final few articles in this series will show how to eliminate ambiguities
inherent in the arctan function as well as establish continuity at the 2=
boundaries, thus converting the phase differences from modulo 7 to the actual
values attained in the image field. Also to be described are ways to utilize
intensity measurements recorded on the fly (phase shifting instead of stepping)
and the associated modifications in the equations given above. Finally, we will
learn how to obtain specimen displacement from the phase difference, and, time
permitting, show an improved but simple setup along with sample software. B

The next articles will discuss, time
permitting:

eliminating ambiguities in the arc-
tangent function,

establishing continuity at 27
boundaries,

collecting data on the fly (phase
shifting),

interpreting phase difference data
to determine specimen displace-
ment,

e a simple setup,

sample software.
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