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Optical Methods in Experimental
Mechanics
Part 45: Measuring Phase Difference—Part I:
The Problem

Change of phase difference map
obtained by phase-shifting
electronic speckle pattern
interferometry showing
out-of-plane deformation caused by
transient heating of a composite
plate that contains a small
delamination caused by impact.
The anomalies in the fringe pattern
show the location of the damage.
Photo by X. L. Chen and G. L.
Cloud at Michigan State University,
ca. 1993.

REVIEW AND PURPOSE
The previous article of this series reviewed the fundamental concepts of optical
measurements and outlined the ways in which they are utilized in several
techniques for measuring strain, velocity, and displacement. We noted that all
of the methods that are based on interference require precise measurement of
either absolute path length difference or, more commonly, changes of path length
difference.

This article begins a short series on precise determination of path length difference
by reviewing basic interferometry and by extending this learning to accommodate
the less-than-ideal interference usually occurring in practice. These studies lead
directly to an understanding of the problems that must be solved in order to
obtain useful data from any interference technique.

This article:
• reviews basic interference concepts,
• studies non-ideal interference,
• leads to formulation of the two

problems that must be solved
to obtain precise data from any
implementation of interferometry.

Until now, we have usually spoken in term of path length difference (PLD) or
relative retardation (r) because of their obvious meanings as physical distance.
When solving diffraction problems and when measuring PLD by compensation
or electronic techniques, common practice is to work in terms of phase difference
or phase change. We here gradually slide into this usage as we begin to explore
various methods of obtaining precise measurements of phase difference at a single
point or over a whole field. The whole-field result from applied experiments is a
‘‘change of phase difference’’ map, but it is often called a ‘‘phase map’’ for short.
A photoelasticity fringe pattern, for example, can be thought of as a phase map if
the experiment started from zero load and if the relative retardation is converted
to phase difference.

In whole-field experiments, the goal of
interference measurement is a map of
change of phase difference, relative
retardation, or change of path length
difference. The result is usually called a
phase change map.

PERFECT COLLINEAR INTERFERENCE
It would be a good idea at this point to go way back and review Parts 2 and 3 of
this series, published in 2002, which dealt with interference of light waves, path
length, and the generic interferometer. The intensity or irradiance resulting from
ideal collinear interference of two identical coherent light waves was found to be,

Is = 4A2 cos2
(πr

λ

)
(45.1)

where Is is the irradiance created by interference of two waves having the same
wavelength λ and the same amplitude A; and r is the relative retardation or
path length difference (PLD) between the two waves in spatial units. In light of
our learning so far, let us change the form of this equation a bit so it agrees with
common practice.

Is = Imax cos2
(πr

λ

)
(45.2)
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Where Imax is the maximum intensity or irradiance created by the sum of the
waves. Later, we will write the PLD in phase angle units, but it seems easier to
deal with length units for awhile.

The sketch below shows the resultant intensity plotted as a function of the
retardation.

For ideal interference of two identical
waves, the observed intensity varies
between zero and a maximum as the
square of the cosine of the PLD times pi
over wavelength.

OBTAINING PATH LENGTH DATA FROM
INTENSITY—IDEAL CASE
As we learned, one of the many strengths of all interference techniques lies in
the fact that, in principal, simple measurements of intensity allow us to measure
PLD’s with sensitivity and accuracy equal to a fraction of the wavelength of
light. This measurement of PLD can be accomplished either point-by-point or
simultaneously over a large field to yield a map of PLD, which, in mechanics
applications, is often the desired map of displacement caused by load.

The power of interference techniques is
that PLD can, in principal, be obtained
from measurements of intensity.

Serious problems immediately arise even in this ideal case. Thinking about these
issues is worth some time because it will help us work through the more complex
non-ideal situation. The first is the difficulty inherent in all interferometry.
Consider the figure above, and suppose that the measured intensity is Io. This
single measurement does not tell us exactly where on the graph we are. The
PLD (r) might correspond to that of points L, M, N, O, or an infinity of other
values if the graph were extended to the right or left. We have suggested that
this difficulty can be solved in some applications by counting interference orders
(i.e. fringe orders) as they pass by. In a Michelson interferometer, for example,
one starts at a certain PLD, often zero, and counts the alternating intensity
maxima and minima as the PLD is changed. The same is true of photoelasticity.
For the simple example pictured, suppose the final PLD corresponds to point O.
One complete intensity cycle will have passed by as the PLD approaches its final
value, so we know that the PLD corresponds to either O or N in the picture.
Further, the intensity will have passed through the zero-intensity minimum at a
PLD of 3λ/2, so we know that the PLD is between that value and 2λ. In terms of
fringe order, we have established the nearest whole- and half-orders, so we know
roughly what the actual PLD is for our experiment. We could now interpolate
and estimate that the PLD in the example is about 1.8λ, and that approximation
might well be sufficient for the application.

Three related problems arise when
trying to determine PLD from a
measurement of final intensity through
use of the retardation-intensity
equation, namely:

• We cannot determine which cycle
of the intensity graph is the correct
one.

◦ When possible, this problem
can be solved by counting
cycles and half-cycles as they
pass.

• We cannot determine the exact
fraction of a cycle without knowing
one more datum.

◦ Possibly an observation of the
maximum intensity can be
used.

• The problem is poorly conditioned
near maxima and minima of the
graph.

◦ Large changes of retardation
yield only small changes of
intensity in these regions.

Usually, better accuracy is needed. We run into the second difficulty when we
follow the plan and substitute the measured intensity Io into equation 45.2 to
solve for r . We have only one measurement and there are two unknowns. The
trouble is that we do not know the combined intensities of the interfering beams
Imax. The obvious solution is to measure it as we pass through a peak value
while counting orders. However, in many experiments, the Imax varies as cycles
of fringe orders pass by, and it almost always varies over the optical field. Also,
the problem is poorly conditioned if the Io lies near a maximum or a minimum,
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because rather large changes of PLD yield only small changes of intensity in
those regions.

In summary, we find that it is possible but often not satisfactory to obtain PLD
by counting interference orders and then obtaining somehow two measurements
of intensity to use in the equation that relates intensity to PLD. The problems
are compounded in real-world experiments, because they rarely approximate
the ideal case. Monochromatic photoelasticity is probably the only technique of
experimental mechanics that closely approaches ideal interferometry. Improved
knowledge and techniques are required for precise measurements in almost all
other implementations. The problems found in the ideal case are

compounded in real-world
interferometry. More analysis is needed.

NON-IDEAL INTERFERENCE
In practice, interferometry is complicated by a number of factors, including:

1. The interfering waves likely do not have identical amplitudes, and they
might differ by a large amount.

2. The waves might not have exactly the same polarizations.
3. The waves might not be perfectly coherent in temporal or spatial

coordinates.
4. The starting path length difference probably is not zero or a multiple of the

wavelength, meaning the initial intensity is not a maximum.
5. The intensity versus PLD relationship might be contaminated by vibrations

in the setup, air currents, or other noise that causes it to deviate from its
ideal shape.

6. The interfering waves probably do not travel along the same axis, meaning
they undergo oblique interference, a problem that was discussed in Part 4
of these articles.

Complications experienced in non-ideal
interference include:

• The interfering waves do not have
identical amplitudes.

• They might not have the same
polarizations.

• They might not be perfectly coher-
ent.

• The starting PLD is probably not
zero or at a maximum or minimum.

• The intensity versus PLD relation-
ship is probably contaminated by
noise.

• The interfering waves might not be
brought together along the same
axis.

Consider for now only the first of the problems enumerated above. Dealing with
that one shows how to attend to the most of the rest of the list, as will become
clear eventually.

COLLINEAR INTERFERENCE OF TWO WAVES HAVING
DIFFERENT AMPLITUDES
Intuition and knowledge of the ideal case would probably lead you to the
correct form of the relationship between intensity and PLD for the case where
the interfering waves have different amplitudes. To be certain, let us outline the
derivation, the result of which dominates interferometry calculations. Start, as
we did in Part 2 of this series, with two simple coherent harmonic waves that
are brought together along the z-axis. For variety we will say that one leads the
other by a PLD equal to r . This time, however, allow the waves to have different
amplitudes. Rather than use complex variables, which would be quicker, we
regress to trigonometric forms that are easy to visualize.

E1 = A cos
[

2π

λ
(z − vt + r)

]

(45.3)
E2 = B cos

[
2π

λ
(z − vt)

]

Add these scalar amplitudes of the wave vectors together as usual. While at it,

Analysis of the collinear interference of
two waves that have differing
amplitudes shows how to attend to the
complications mentioned above and
suggests what measurements are
required for precise determination of
phase difference.

simplify matters by writing the equations in terms of initial phase difference
φ = 2π

λ
(z − vt) and a change of phase difference δφ = 2πr/λ. We have for the

scalar amplitude of the sum of the waves,

Es = A cos(φ + δφ) + B cos φ (45.4)

The goal is to see how the interference modulates the total intensity. One good
approach is to divide up the scalar wave amplitude as follows,

Es = 1
2
(A + B)[cos(φ + δφ) + cos φ] + 1

2
(A − B)[cos(φ + δφ) − cos φ] (45.5)
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Use the identities for the sum and difference of the cosines of two different angles
and sort the parts out to obtain,

Es =
[
(A + B) cos

δφ

2
cos

(
φ + δφ

2

)]
−

[
(A − B) sin

δφ

2
sin

(
φ + δφ

2

)]

(45.6)

The quantity in each square bracket is in the usual form of an amplitude times a
wave function. Clearly, there are two waves that have different amplitudes, both
of which contain the change of phase difference. One wave is out of phase with
the other by π/2. It is convenient and in this case valid to claim that the total
intensity Is will be the sum of the intensities of the individual waves, which is
the sum of the squares of the amplitudes,

Is = (A + B)2 cos2 δφ

2
+ (A − B)2 sin2 δφ

2
(45.7)

Expand the squared expressions and also use the identity sin2
x = 1 − cos2 x to

obtain after gathering up terms,

Is = (A − B)2 + 4AB cos2 δφ

2
(45.8)

Note that if the amplitudes of the interfering waves are equal, this result matches
that given above for ideal interference. Although the result is already in useful
form, it makes more sense if we use the identity cos2 x = 1

2 (cos 2 x + 1) to
obtain,

Is = A2 + B2 + 2AB cos δφ (45.9)

The first two terms are the intensities of the individual waves, so we can write,

Is = IA + IB + 2
√

IAIB cos δφ (45.10)

It is interesting to note that a plot of equation 45.8 containing cos2 δφ

2 is identical
to a graph of equation 45.10, which contains cos δφ. This fact has surprised
generations of students.

In practice, we usually do not care about the actual intensities of the
interfering waves beyond making them as near equal as possible to maximize
modulation or swing from dark to light. Now that we understand the relationship
between observed intensity and the change of phase difference, we can convert
equation 45.9 to an alternate useful form by noticing that the maximum intensity
will be at δφ = 0, which gives Is max = A2 + B2 + 2AB; and the minimum is
where δφ = π , which means Is min = A2 + B2 − 2AB. The result is,

Is = Imax + Imin

2
+ Imax − Imin

2
cos δφ (45.11)

The figure below shows a graph of the observed intensity as a function both of
phase difference and of PLD = r.

The observed intensity can be seen as
the average of the intensities of the two
waves plus half their difference times
the cosine of the phase difference.
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OBTAINING PATH LENGTH DATA FROM
INTENSITY—GENERAL CASE
Refer to the figure above and suppose that we have measured the intensity Io.
The task is to determine the δφ corresponding to this intensity. The problems we
met in the ideal case discussed above are compounded. There are three unknowns
in either of Equations 45.10 or 45.11. An infinite number of possible cosine waves
having the same periods pass through point A, especially if we could not set up
the experiment so the starting intensity was at Imax. As before, O might lie on
any one of the cycles of the wave, and an infinity of others.

Part of the solution might be to somehow count the number of cycles between

To determine phase difference from
intensity measurements in the non-ideal
case, the following problems must be
addressed:

• Again, we do not know which cycle
of the curve is correct.

◦ Counting cycles and half-
cycles of maximum and mini-
mum between start and finish
might solve this problem if
the experiment allows such a
procedure.

• There are three unknowns in the
equation.

◦ Measurements of maximum
and minimum intensity in
addition to the final intensity
would allow a determination
of the fraction of a cycle.

• The phase difference at the start
of the experiment must also be
measured because it is probably not
known a priori.

• The procedure is poorly condi-
tioned.

◦ Small changes of intensity
correspond to large changes
of phase difference near the
maxima and minima of the
cosine relationship.

maximum and minimum intensity in order to determine which cycle is the correct
one. After that, it seems that three measurements must be acquired, e.g. Imax and
Imin, in addition to Io. Again, this approach is poorly conditioned for the reasons
mentioned above, although it can be made to work.

Finally, recall that in a typical experiment, the change of retardation or phase
difference must be determined. How can we account for the probability that the
experiment did not start conveniently at the maximum intensity? Imagine, for
example, that we cleverly measured the starting intensity, identified as Is on the
graph shown above. The goal is to obtain the change of δφ between the points
S and O. Clearly, the initial δφs as well as the final δφo must be established in
order to compute the change. So, the problem of obtaining PLD from intensity
measurements must be faced twice, once for the initial state of the specimen and
once for the final state.

SUMMARY OF THE PROBLEM AND A LOOK AHEAD
We conclude that a valid measurement of the change of PLD or phase difference
between the interfering waves requires precise determinations of the initial and
final values of phase difference. The initial value is then subtracted from the final
value, a process that tends to magnify uncertainties. For each determination,
a minimum of three intensity observations are required, and some method of
counting the whole interference cycles between the initial and final states must
be incorporated. Finally, the analysis method must minimize uncertainties such
as those caused by the shape of the cosine function and by noise.

In summary, to obtain a valid
measurement of the change of phase
difference:

• The phase differences at the start
and the end of the experiment
must be established and the results
subtracted.

• For each determination of phase
difference, at least three intensity
measurements are required.

• Some method of counting whole
interference cycles through the
course of the experiment must be
incorporated.

• The analysis method should be
well conditioned to minimize
uncertainties.

The problem of establishing phase difference from intensity measurements is,
we hope, now well understood. What is the solution? Several well-conditioned
approaches to perform the observations and calculate the required change
of phase difference have been developed. Some of these, such as various
compensation techniques used in photoelasticity before the age of computers,
are quite old. Others, including the so-called phase-shifting or phase-stepping
methods developed for digital speckle pattern interferometry, are relatively new.
No matter the application and the implementation, all these approaches are
fundamentally similar in concept. They involve changing the phase difference
between the interfering waves by known amounts and observing the resultant
intensities.

Several methods of measuring change of
phase difference, some old, some new,
have been developed.

• The basic unifying concept is that
they involve creating known phase
changes between the optical paths
and recording intensity at each
change.

• A simple illustrative example will
be the topic of the next article.

The next article in this series will examine a simple example to illustrate
how to solve the problems outlined above with the goal of cementing the
concepts. �
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