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Optical Methods in Experimental
Mechanics
Part 38: Photoelasticity X—Transfer
of Stress Data From Model to Prototype

REVIEW AND PURPOSE
The previous several articles in this series have shown how photoelasticity can be
implemented to determine the stress state in a transparent model of a prototype
structural component.

The objective now is to transfer the stress data from the photoelastic model to the
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prototype, which likely is made of a different material, carries different loads, and
is of different overall size. The effects of material properties, loads, and geometric
scaling must be analyzed, and the appropriate scaling laws must be developed.

Stresses obtained from a photoelastic
model are transferred to the prototype,
which likely differs from the model in
material, size, and shape.

THE QUESTIONS
If you demonstrate photoelastic stress analysis to a group of engineers or lay
people, or when you present photoelasticity results to management, the following
question will be raised sooner or later, in one form or another, and maybe in a
tone that implies dismissal. ‘‘Well, you have obtained the stress distribution in
a plastic model, but what does that prove about the stresses in the actual part,
which is to be made of steel?’’ If not steel, maybe the prototype structure is made
of concrete, composite, bone, ice, cardboard, or collagen. How do you handle the
differences in material properties?

The loads applied to the model are probably different from those applied to the
real structure. Certainly, a plastic model cannot resist as much load as a metal
prototype, even if they are of the same size. How should you account for this load
difference?

To determine stresses in the prototype
from model studies, the following
questions must be answered.

• How does one account for the
difference of material properties?

• How does one adjust for the
difference of loads?

• May one make the model larger or
smaller than the prototype, and, if
so, how does one compensate for
the size difference?

A final aspect of the question has to do with the possibility, dictated by necessity
or convenience, that the model be larger or smaller than the prototype. You might
be studying the stresses in a river dam, which is certainly too large to model full
scale in your laboratory. On the other hand, the analysis might involve stress
measurement around a single miniscule fiber in a composite, in which case you
might rather make the model many times larger than life size. How does one
scale the results of the stress analysis to account for the different sizes of model
and prototype?

The need to transfer experimental results from model to prototype raises profound
questions about the dependence of stress magnitudes and distributions on
material properties, load magnitudes, load directions, relative sizes of model
and prototype, and a host of other factors.

These questions are not confined to the arena of experimental solid mechanics.
The inventors of controlled flight, Orville and Wilbur Wright, were successful
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because they pioneered small-scale wind tunnel testing of the flow of air over
model airfoils and shrewdly inferred that their measurements of lift could be
applied to a full-scale airplane wing. Fluid mechanists have since solved similar
problems via modeling techniques for many years. Civil engineers fabricate
laboratory models of harbors, skyscrapers, and viaducts to study responses of
these structures to everything from earthquakes to tsunamis. Biomechanists
have employed experimental models to study tooth, hoof, horn, and feather.

Transfer of results from a model
experiment to the prototype is:

• a profound topic,
• productively applied in many

fields including, among many
more,
◦ aviation,
◦ fluid mechanics,
◦ geomechanical engineering,
◦ biomechanics,

• based on dimensional analysis
and known related solutions.

Profound questions require profound answers. Indeed, the general field of model
similarity and scaling is deep, sophisticated, and fascinating. But, more narrowly
focused applications allow answers that are less general and less sophisticated,
but still serviceable, correct, and adequate. Such is the case with basic applied
photoelasticity. The general field of dimensional

analysis is sophisticated, but specific
applications facilitate less-general
solutions that are correct and
serviceable.

The following sections present first a very simple approach to dealing with the
material properties question in photoelasticity, as well as the limitations to that
approach. Then, the elementary techniques to attend to size and load scales are
offered. Finally, some aspects of the general theory for dealing with size and
material differences between model and prototype are outlined in order to point
the way for those who wish to gain fuller understanding of this complex and
interesting subject.

MATERIAL PROPERTIES
Go back to the question raised at the top of this article about how the material
properties affect the measured stress distributions. Recall from mechanics of
deformable solids or elementary elasticity the equations for stress in typical
structural components, for example:

Basic solutions for stress in structural
components do not include material
properties, so we infer that material
properties need not be considered when
transferring stresses from model to
prototype. This conclusion does not
apply to all cases, so more
comprehensive study is required.

σ = P
A

for a tension specimen (38.1)

σ = My
I

for a beam in bending (38.2)

Even experienced engineers are sometimes startled by the realization that neither
the modulus of elasticity nor Poisson’s ratio appears in these relationships.
Only loads and geometric properties are factors. The tentative conclusion is
that material properties are not important, so stresses that are measured in a
photoelastic model are identical to what they would be in a metal prototype of the
same size and shape and under the same load. It seems that material properties
need not be considered when transferring stress from model to prototype.

This inference drawn above from elementary considerations is true and can
be utilized in the great majority of applied photoelasticity studies; but, of
course, there are exceptions. Utilization of elasticity theory leads to the following
summary statements about the importance of material properties for studies
of objects made of homogeneous isotropic materials. Except where noted, it is
assumed that the body forces are zero or constant and there are only traction
(force) boundary conditions.

Elasticity theory leads to the following
rules that govern the importance of the
properties of model and prototype:

• For shapes with no holes, material
properties need not be considered.

• For shapes with holes that are free
of unequilibrated force on any
boundary, the material properties
need not be considered.

• If any boundary of a shape with
holes carries an unequilibrated
load, then Poisson’s ratio is a
small factor in the stress
distribution.

• If the body forces are not zero or
constant, then the Poisson ratio is
a small factor.

• In those cases where it is a factor,
ignoring the difference between
Poisson’s ratios of model and
prototype induces errors that are
usually small enough to ignore.

• If displacement boundary
conditions are imposed, then the
modulus of elasticity is an
important factor that is easily
taken into account.

1. If the object being studied is ‘‘simply connected,’’ meaning it has no
holes, then the stress distribution is completely independent of material
properties.

2. For ‘‘multiply connected shapes’’—ones with holes—that are free of
unequilibrated force on any boundary, the stress is again independent
of properties.

3. If any boundary carries an unequilibrated load, such as usually happens
with fasteners, for example, then the stress distribution depends to some
degree upon Poisson’s ratio but not the elastic modulus.
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4. In the rare case where body forces (e.g. gravity loads) are not zero or a
constant, then the Poisson ratio is a factor, but other material coefficients
are not.

5. Even for those cases where it is a factor, the error in ignoring the difference
between the Poisson ratios for model and prototype is usually much less
than 7%, and it can be ignored for most cases.

6. If displacement or strain boundary conditions are specified, which is
a relatively rare situation, then, obviously, the stress magnitudes are
proportional to the modulus of elasticity, and it is easily taken into account. The conclusion is that in most

photoelasticity studies, material
properties need not be considered when
transferring the results of experiment to
the prototype.

The conclusion is that in the great majority of practical applications of
photoelasticity, the differences in properties of model and prototype are not
relevant as long as both are behaving in a ‘‘momentarily linearly elastic’’ way
(see Part 30 of this series). If creep or relaxation is a factor in the problem,
then the material similarity conditions are more complex because time must be
considered. The rules are also more stringent for non-isotropic materials.

LOAD MAGNITUDE
This one is easy! Except for certain nonlinear cases, such as near a load application
point or where large deflections change the geometry, stress magnitudes are
always proportional to the applied load. If Pm is the load applied to the model and
σ m is the resulting stress in the model, and if Ppand σ p are the corresponding
quantities for a prototype that is identical to the model in size and shape, then
the stress is simply scaled by the load ratio, The load difference between model and

prototype is easily accounted for because
stress is proportional to load, other
things being equal.σ p = σm

(
Pp

Pm

)
(38.3)

If, as is usually the case, more than one pair of equilibrated loads is applied to
the model, then the ratios of like loads between model and prototype must be
constant. A similar rule holds for load directions. The model does not accurately
represent the prototype unless these conditions are observed.

SIZES AND SHAPES
The rule for shape correspondence between model and prototype is intuitively
obvious. Geometric similarity requires that the model be linearly scaled up or
down relative to the prototype. That is, the model should look like a photographic
enlargement or reduction of the prototype. To do otherwise is to change the
problem because the shape is changed. Geometric similarity requires that the

size of the model can be changed relative
to the model, but the shape must not be
changed. Think of a photographic
enlargement or reduction.

The proper way to scale stresses to account for the ratio of model size to
specimen size is also easy to work out. Consider again the basic solutions for
stresses in structural components, examples of which were presented above.
What happens when the size is changed? Take as a first example a tension
member. If all dimensions of the specimen are doubled, the cross sectional area
is quadrupled, and the tensile stress is reduced by a factor of four. A cantilever
beam provides a second guiding example. Increase ALL the dimensions, including
the moment arm, by a factor of two, then compute the bending stress at the
point whose distance from the neutral axis is also doubled. The stress will
again be found to be decreased by a factor of four. These examples lead to the
correct idea that stresses are inversely proportional to the square of the size
ratio.

Scaling stresses to account for the
difference in size between model and
prototype is easy to do, because stress is
inversely proportional to the square of
the magnification.

• If the model is twice as large as the
prototype, then the stresses are
reduced by a factor of four.

• This conclusion, based on
elementary considerations, is
supported by strict dimensional
analysis.

One further detail merits attention. In two-dimensional photoelasticity, the ratio
of thickness between model and prototype is often made different from the ratio
of the lateral dimensions. That is, the thickness need not be scaled by the
same factor that is used for the size. This step is taken when, for example,
strict proportional scaling would create a specimen that is very thin, might
buckle, and would yield very low fringe orders. The modified stress scaling
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law for this situation is easily worked out by extending the reasoning outlined
above.

In photoelasticity, the
model-to-prototype thickness ratio can
be made different from the size ratio.
This practice is often useful.

THE SCALING LAW
Assemble the findings for load and size scaling as developed above to obtain a
final solution for the stress in the prototype in terms of the stress in the model
and the load, size, and thickness ratios. This result applies to all cases except
those exceptions where material properties absolutely must be considered.

σ p = σm

(
Pp

Pm

) (
am

ap

)(
dm

dp

)
(38.4)

where: m and p subscripts refer to model and prototype respectively,

Pp
Pm

is the load scale factor,

am
ap

is the scale factor for size and is the magnification factor,

dm
dp

is the thickness scale factor.

The analysis outlined above was developed in terms of a single normal stress
component for the sake of convenience. Photoelasticity yields directly the principal
stress difference or maximum shear stress. The material similarity and scaling
rules developed here for normal stress may be applied directly to shear stress.
Likewise, they may be used for cases where the photoelastic results are cast in
terms of strains.

In words, the scaling law declares that
the stress in the prototype equals the
stress in the model times (the ratio of
prototype load to model load), times (the
ratio of model thickness to prototype
thickness), and times (the ratio of model
size to prototype size).

ADVANCED STUDY
The ways in which material properties affect the relationships between load,
body forces, and stresses for shapes having a single boundary (no holes) can be
thoroughly analyzed within the limitations of linear behavior by looking at only
the compatibility equations of elasticity. One finds that Poisson’s ratio enters
the formulation for only some body force distributions. For shapes with multiple
boundaries, the compatibility equations are necessary but not sufficient. The
condition that displacements be single-valued must also be enforced by requiring
that the resultant displacement integrated around each and every boundary be
zero. In general form, this procedure evolves into ‘‘Mitchell’s conditions.’’ These
equations demonstrate that the Poisson ratio is a factor only when the traction
on any one boundary is not self-equilibrated.

The scaling laws for all types of model analysis, including photoelasticity,
are developed in a sophisticated way through application of Buckingham’s
Theorem, otherwise called the Buckingham Pi Theorem. This powerful approach
to dimensional analysis and similitude was formalized and published in about
1914 by Edgar Buckingham, a renowned soils physicist, to whom the theorem is
usually credited. But, the idea was evidently first utilized by one of our favorite
gentleman geniuses, Lord Rayleigh, prior to his description of the method in
1877. Briefly, this weapon, when applied to problems of stress analysis in solid
mechanics, requires that the stress be expressed as an unknown function of a set
of all the independent dimensionless products (usually ratios) that can be formed
from all the variables that might possibly affect the stress. The key point is that
the same functional relationship will apply equally to model and prototype, but
the relationship need not be known and discovery of it is not necessarily the goal of
the analysis. The result is a set of equality conditions for the dimensionless ratios
that must be satisfied in order that the dimensionless stress metric for model
and prototype be the same. For our problem, the finding is that equation 38.4 is
valid and our elementary analysis is supported as long as the size and loads are
linearly scaled.

The scaling laws for all types of model
analysis, including photoelasticity, are
obtained through dimensional analysis
based on the Buckingham Pi Theorem,
first used by Lord Rayleigh and
formalized by Edgar Buckingham.
Dimensional analysis is a powerful aid
in understanding complex physical
phenomena, and it can lead to the
maximization of benefit from
experiments on problems involving
many parameters.
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Sometimes the rules for geometric similarity are deliberately violated, the
separation of thickness and size scaling factors being an example already
mentioned. Another case is when one needs to compensate for large deflections
in the model. Dimensional analysis serves as a guide in these matters.

At first immersion, dimensional analysis with the Pi theorem seems to be an
arcane subject whose utility is limited and obscure. It is, in fact, a very powerful
aid to comprehension of complex relationships in physics and engineering, and it
leads to maximum return from simple experiments on problems where a great
many parameters might be involved. This subject seems to be largely ignored in
our crowded engineering curricula these days, except for some special applications
such as the one discussed here. Demands for cost-effective experiments to validate
engineering designs and create new knowledge might reverse this unfortunate
trend.

WHAT IS NEXT? The next article will probably deal with
the recording and utilization of isoclinic
data.

Next time we will probably have a go at recording isoclinic fringes and discovering
their elementary utilizations. �
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