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OPTICAL METHODS Back to Basics by Gary Cloud

Optical Methods in
Experimental Mechanics
Part 15: Fourier Optical Processing

REVIEW AND PURPOSE
Article 14 of this series demonstrated an example of the optical Fourier trans-
form, and it also uncovered a major problem with the Fraunhoffer limitation in
that the transform is located far away from the aperture.

This article shows that a lens can be used to create the transform within the
confines of the laboratory. Then, the use of the optical Fourier transform in mod-
ifying the frequency content of a picture is described and sample applications are
mentioned.

THE TRANSFORM LENS
The Fraunhoffer approximation that was imposed during the development of the
diffraction integral implies that the true optical Fourier transform is visible only
‘‘far away’’ from a ‘‘small’’ aperture. No problem appears when the transform of
a tiny aperture is sought, as is the case with Young’s experiment. If, however,
the aperture is ‘‘broad,’’ the transform appears, perhaps, several kilometers dis-
tant from the input plane. In the nearer field, the Fresnel equation applies, and
the product is contaminated with extra exponential terms. Transforms of wide
aperture signals are often needed, for example in holography, picture enhance-
ment, microscopy, and moire analysis. The objective is to produce these trans-
forms for broad apertures within the confines of the laboratory.

The solution is to bring the far-field rendition of the optical Fourier transform
close to the aperture. This task is accomplished by use of a lens in one of many
possible arrangements, a simple example of which is illustrated in the sketch
below.
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In this example, an expanded and collimated laser beam is made to pass through
what has come to be called the ‘‘transform lens,’’ which converges the beam to a

Editor’s Note: Optical Methods: Back to Basics, is organized by ET Senior Technical Editor, Kristin Zim-
merman, General Motors, and written by Prof. Gary Cloud of Michigan State University in East Lansing, MI.
The series began by introducing the nature and description of light and will evolve, with each issue, into topics
ranging from diffraction through phase shifting interferometries. The intent is to keep the series educationally
focused by coupling text with illustrative photos and diagrams that can be used by practitioners in the class-
room, as well as in industry. Unless noted otherwise, graphics in this series were created by the author.

The series author, Prof. Gary Cloud (SEM Fellow), is internationally known for his work in optical measurement
methods and for his book Optical Methods of Engineering Analysis.

If you have any comments or questions about this series, please contact Kristin Zimmerman, Kristin.b.
Zimmerman@gm.com.

Top: High-resolution phase contrast
transmission electron micrograph of
Ni3Al compound taken at wavelength
1.9 pm. The horizontal distance
between the bright dots (atoms) is 2.2
nm. Center: Electron diffraction
pattern from same material formed in
the back focal plane of the objective
lens of the TEM. Bottom: A fast
Fourier transfom of the high-resolution
image that replicates the general sense
of the diffraction pattern including the
varying intensities associated with the
lattice ordering. Photos provided by Dr.
Martin A. Crimp, Michigan State
University.

Objectives are to:
• use a lens to force the optical Fourier

transform to appear close to the
aperture, even for large apertures,

• use spatial filtering to modify the
frequency content of an image.

The Fraunhoffer limitation implies that
the optical transform appears far away
from the aperture. The distance might
be several kilometers for a broad
optical signal such as a moiré grating.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

point that establishes the focal length of the lens. Place a viewing screen or
detector array at this distance from the lens in what is called the back focal plane.
Now, place the optical signal, probably in the form of a transparency or phase
object into the system in front of the lens. The beam entering the lens now con-
tains the aperture data, and the Fourier transform diffraction pattern will be
seen on the screen.

To see how this works out mathematically, go back to the Fraunhoffer integral
(Part 13, equation 13.8). Ignore the multiplier preceding the integral, and take
x1 /z1 � 0 because the source is at infinity for the collimated light used in this
example. Viewing is in the back focal plane, so x2 is just x, and z2 is the lens focal
length � F. The integral simplifies to,

x x
�ik � �i2� �� � � �F �FU � � T(�)e d� � � T(�)e d� 15.1p

aperture aperture

The result is the Fourier transform of the input signal, as before. Now, however,
the transform appears in the focal plane of the lens and so is under control. Also,
the scaling factor is modified by the focal length of the lens. The spatial frequency
metric has become f � x /�F instead of f � x2 /�z2 as appeared in the Fraunhoffer
integral.

That the input signal can alternatively be placed downstream from the lens is
quite easy to demonstrate. An interesting aspect of that development, which is
not undertaken here, is that it is one instance where the Fresnel equation can
be integrated. The effect of the lens cancels the extra term that appears in the
Fresnel integral. The frequency metric then contains the distance from the signal
to the viewing plane.

Collimated incident light was chosen here to simplify the mathematics, but it is
not required. The source can be located at a finite distance from the lens, which
implies that the collimating lens can be removed entirely. In that case, the dis-
tance from the transform lens to the back focal plane is not equal to the focal
length of the lens. It is found by locating the point of convergence of the light
beam. Again, the frequency metric will be modified.

Now that we have a method to produce and locate the optical transforms of ex-
tended optical signals, two examples fix the ideas and begin to suggest some
useful applications. Suppose that the input transparency contains parallel lines
(a grill) with the transmittance varying sinusoidally across the lines. The trans-
form plane will exhibit only 3 bright dots. The center dot shows the strength of
the zero-frequency background. The other two spots will be symmetrically ar-
ranged above and below the center, and the distance from the center to these
dots is proportional to the spatial frequency of the sine wave in the signal grating.
Now, replace the sine grating by a sharp bar-and-space grill. Sharp edges imply
the presence of high-frequency components. The optical Fourier spectrum will be
a row of dots symmetrically arranged from the center. The location of a dot gives
the spatial frequency of the corresponding spectral component, and the bright-
ness of the dot gives the relative amplitude of the component. These phenomena
are illustrated in the photograph in Part 9 of these articles and also in the elec-
tron microscope photos above.

OPTICAL FOURIER PROCESSING OR SPATIAL FILTERING
A significant application of the optical Fourier transform is realized by the ad-
dition of two more ideas. The first is that the spatial frequency content of the
original input optical signal can be easily modified in the Fourier transform plane.
The second is that another lens placed downstream may be used to perform a
second transform, an inverse transform, to regenerate the original signal, now
modified by having its spatial frequency content changed. Such a procedure is
called spatial filtering, coherent optical data processing, or optical Fourier proc-
essing.

A lens is placed in the system adjacent
to the aperture, with these results:
• the optical transform appears in the

back focal plane of the lens,
• the spatial frequency metric in the

transform plane is changed.

Several different optical setups can be
used.
• The optical signal can be ahead of or

behind the lens,
• The light passing through the signal

need not be collimated,
• The spatial frequency metric depends

on the setup.

Recall that:
• distance from the center in the

transform plane is proportional to
spatial frequency at the input plane

• local intensity in the transform plane
is proportional to the amplitude of
the corresponding spatial frequency
component in the input.

Optical spatial filtering or Fourier
optical processing is implemented by:
• modifying the frequency content of

the input signal by use of a filter
placed in the transform plane,

• using a second lens to create an
inverse transform.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

The sketch below shows one of many possible arrangements for implementation.

collimating
lens

laser

beam
expander

transform
lens

input
spatial
signal

optical
Fourier
transform

spatial
filter

inverse
transform
lens

image of
modified
input signal

An optical signal is placed in a collimated beam, as before, to generate its trans-
form. Added to the system is an inverse transform lens that creates an image of
the input plane on a viewing screen or detector array. Also added is a device,
called the spatial filter, to block or modify portions of the Fourier transform. The
inverse transform image is made of what is left. No additional theory is needed
to understand this concept.

In the system sketch, the input signal has sharp variations (corners) in its trans-
mittance function. The spatial filter is a hole in an opaque plate, meaning it
blocks the high-frequency components that are furthest off-axis. The inverse im-
age is made with the low-frequency data, which implies that the ‘‘corners’’ on the
input are lost.

An exaggerated thought experiment serves to illustrate the process and suggest
its usefulness.

original
photo

diffraction
pattern

filter
mask

recovered
image

Suppose that you have a photographic transparency of a person who is significant
to you, but who, for some reason, could be photographed only through a substan-
tial grillwork. You would be pleased to eliminate the grill from the picture. Place
the photo in a Fourier filtering system. The transform will show a fuzzy bright
ball that contains most of the picture information. The grillwork, because it is
periodic, will yield four bright patches. The two spots on the vertical axis are
from the horizontal bars, and the two on the horizontal axis are the data from
the vertical bars. Place in the transform plane a transparent sheet that carries
four black patches, and arrange these so they block the bright spots from the
grillwork data. The inverse transform reconstructs the image, but the grillwork
information has been deleted, so the bars no longer appear in the picture.

The exaggeration in this example derives from the implication that the portions
of the image that are occluded by the bars can be recovered. As usual, one cannot
make something from nothing. However, if the bars are finer than shown and not
too closely spaced, the filtering process will indeed greatly improve the photo-
graph. The same is true if the bars are partly transparent. Some smoothing of
the derived image will further improve it.

The inverse transform is an image that
is:
• formed with the light that passes

through the spatial filter,
• a replica of the input picture but now

with its spatial frequency content
modified.

Optical spatial filtering:
• can remove unwanted obscuring or

confusing details from a photograph,
• makes sought information more

visible,
• improves signal-to-noise ratio,
• cannot generate new information that

is absent in the picture,
• is often used with smoothing and

blending techniques to improve
photographs.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

SOME APPLICATIONS
Applications of these ideas to raise signal-to-noise ratio, recover data, and im-
prove pictures are many. The techniques have been used to remove raster scan
lines and noise from video images and space photographs. Enhancement of detail
in aerial photographs for intelligence gathering is another possibility. Fourier
processing is also useful for improving fringe visibility and reducing noise in
moire measurements. The sensitivity of moire methods can be multiplied by se-
lecting only the data contained in the high-frequency domain of the transform,
both during the grating photography and during final data processing. The band-
pass of a lens can be modified so that, for example, only speckles of a certain size
are recorded during speckle photography. Likewise, cracks can be made more
visible by controlling the transfer function of an imaging lens. Often, the optical
Fourier transform is used only to establish the presence and significance of in-
formation in a picture, data that otherwise might not be seen.

Spatial filtering as described here has become less common than it once was. The
Fourier transform, filtering, and image reconstruction are instead performed dig-
itally. The analog process described here is still useful in many instances, and in
some cases it is the only option. Nyquist sampling restrictions and aliasing prob-
lems do not appear. Direct control of the transfer function of a lens or mirror is
possible. The technique also provides a paradigm that helps us understand what
happens inside the computer during digital manipulation of images. Many simply
find it satisfying to be able to view a whole-field visible Fourier transform. �

Applications include, for example:
• removing raster scan lines from

pictures,
• enhancing photographic intelligence

gathering,
• increasing fringe visibility in

interferometry,
• multiplying moire sensitivity,
• controlling the frequency bandpass of

a lens,
• making cracks visible.

Fourier processing of pictures is now
often done digitally. But, the analog
version is still useful and sometimes is
the only option.


