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OPTICAL METHODS Back to Basics by Gary Cloud

Optical Methods in Experimental Mechanics
Part 14: Diffraction at a Clear Aperture

REVIEW AND PURPOSE
Part 13 showed that an aperture, under certain conditions, creates a visible Fou-
rier transform of the information contained in the aperture.

The purpose here is to predict what should be seen when light is passed through
either a long narrow slit or a small circular hole in a plate and to determine
whether the predictions are supported by laboratory observation. These two cases
are mathematically equivalent and require only a two-dimensional analysis. The
circular hole is axisymmetric, so one needs to examine only the medial plane.
This problem is not as trivial as it might seem, and the results are important in
many applications, including optical imaging, speckle methods, and spatial fil-
tering. The findings, when compared with experience, illustrate some implica-
tions of the Fraunhoffer approximations.

PROBLEM AND SOLUTION
For convenience, choose a plane wave front (collimated light) that is illuminating
the slit or circular hole at normal incidence as shown in the first sketch below.
The width of the slit or the diameter of the hole is w. The problem is to predict
the light intensity at some general point P that is a considerable distance away
from the aperture.
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The second sketch (above) shows the transmittance function for the clear aper-
ture, which, from now on, will be called a hole. The mathematical description of
this aperture function, which is a rectangular pulse in space, is,

w
1 for ��� �

� 2T(�) � rect � 14.1� � ww �0 for ��� �
2

This transmittance function is substituted directly into the Fraunhoffer integral,
equation 13.8 of part 13 of this series. Since the illuminating waves are parallel,
the source is at infinity and the x1 /z1 expressions are zero. The transform integral
for the scalar complex amplitude at observing point P becomes,

w
2ik x x�2 22 �ik �� � � �2 z z2 2U � Ce � e d� 14.2wp

�
2

Editor’s Note: Optical Methods: Back to Basics, is organized by ET Senior Technical Editor, Kristin Zim-
merman, General Motors, and written by Prof. Gary Cloud of Michigan State University in East Lansing, MI.
The series began by introducing the nature and description of light and will evolve, with each issue, into topics
ranging from diffraction through phase shifting interferometries. The intent is to keep the series educationally
focused by coupling text with illustrative photos and diagrams that can be used by practitioners in the class-
room, as well as in industry. Unless noted otherwise, graphics in this series were created by the author.

The series author, Prof. Gary Cloud (SEM Fellow), is internationally known for his work in optical measurement
methods and for his book Optical Methods of Engineering Analysis.

If you have any comments or questions about this series, please contact Kristin Zimmerman, Kristin.b.
Zimmerman@gm.com.

Diffraction pattern for clear circular
aperture, photographed on
monochrome film with wide dynamic
range so as to show the rings beyond
the 7th order. Compare with the digital
color picture shown in Part 10. Photo
by G. Cloud.

The objectives are to:
• calculate the diffraction pattern for

two mathematically equivalent clear
apertures:
• a long narrow slit,
• a circular hole,

• compare the predictions with
experiment,

• explore some implications and
applications of the result.

Collimated light is incident upon a
plate containing a small hole or a slit.
The complex amplitude at some remote
point downstream is sought.

Mathematically, the transmittance
function for this aperture is the ‘‘rect’’
or ‘‘top-hat.’’
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

The integral is recognized as the Fourier transform of the aperture function and
is evaluated as follows, ignoring for the moment the multipliers outside the in-
tegral sign,

w
�

2x2
�ik �� �z2e

F{T(�)} � 14.3
x2� ��ik� �z w2

�
2

x2sin kw� �2z2
� 14.4

x2k� �2z2

Recall that kx2 /2z2 is just �f where f is the spatial frequency parameter that is
the distance dimension in transform space (see part 13),

x2f � 14.5
� z2

With this definition in place, the transform can be written in terms of spatial
frequency as,

sin � wf
F{T(�)} � � w sinc(wf) 14.6

� f

A plot of the sinc function appears in the following sketch.

wsinc(wf)

w
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The intensity or irradiance is essentially the square of the sinc function multi-
plied by the square of the expressions outside the integral sign in equation 14.2.
These multipliers can be ignored for development of an understanding of the
intensity distribution in a transform plane where z2 is much larger than x2. A
graph of the square of the sinc function is shown below. Note that the intensity
distribution is plotted at an expanded scale in the left-hand portion in order to
show clearly the way in which the intensity oscillates and diminishes off-axis.
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The complex amplitude at general
observing point P is the Fourier
transform of the transmittance function
times a constant and an obliquity
factor. These multipliers can usually be
ignored.

The Fourier transform is of the form
(sin ax) /x, which is known as the ‘‘sinc
function.’’

The intensity distribution is the square
of the sinc function.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

The graph shows that, for a long narrow slit, the diffraction pattern will be a
system of alternating light and dark bands (fringes) that are parallel to the slit
and that rapidly decrease in contrast with increasing distance from the optical
axis. For the circular hole aperture, the diffraction pattern will be a central bright
patch surrounded by concentric light and dark rings that also rapidly decrease
in visibility with increasing distance from the center.

This pattern can be generated easily by passing light from a laser or even a laser
pointer through a small pinhole in a sheet of foil. The photograph that appears
above is an example of such a pattern that was recorded on monochrome film
having a wide exposure latitude so as to preserve the faint bright rings out to
and beyond the seventh. Qualitatively at least, this result demonstrates the va-
lidity of diffraction theory and the approximations that have been made.

NUMERICAL EXAMPLES AND OBSERVATIONS
This result allows us to understand and predict, among other things, the reso-
lution limit of lenses and the size of laser speckles. As part of the process, one
calculates the diameter of the central spot, called the Airy disc, of the diffraction
pattern. Examination of the intensity graph suggests that this diameter will be
where,

x 122 � 2 14.7� � � �
� z w2

which gives for the diameter of the central bright patch,

� z2d � 2x � 2 14.82 w

Take, for example, an aperture diameter w of 0.2 mm, use red light at � � 0.6
�m, and satisfy the Fraunhoffer restriction by placing the viewing screen quite
far from the aperture at z2 � 1,000 mm. The diameter of the central disc turns
out to be 6 mm. If the aperture diameter is reduced to 0.02 mm, then the central
disc diameter expands to 60 mm. The inverse reciprocity between aperture size
and expanse of the diffraction pattern is evident. The smaller the aperture, the
larger the illuminated area in the diffraction pattern observing plane. This idea
deserves to be looked at more closely.

Consider the case where the aperture is vanishingly small. In this case, the ap-
erture function would be the impulse function or Dirac delta. The Fourier trans-
form of the delta function is a constant, meaning that, in this unattainable ideal
case, the entire transform plane is illuminated by the central patch of the dif-
fraction pattern.

The other extreme seems troublesome. If the aperture is ‘‘large,’’ our theory sug-
gests that the bright patch in the diffraction pattern should be small. That is,
the Fourier transform of a constant extending broadly in the aperture plane
would approach a delta function in transform space. Stated another way, as the
aperture expands, the theory shows that the sinc function becomes narrower.

But, if you project light onto an aperture of, say, 20 mm diameter and if you place
a viewing screen at 1000 mm behind the hole, as we did above, you will see on
the screen a bright patch that is roughly the size of the aperture. In other words,
you see what we usually recognize as the mere shadow of the aperture screen
with maybe some visible fuzziness around the edges of a bright spot of 20 mm
diameter. Yet, diffraction theory predicts for this case an illuminated central spot
having a diameter of only 0.06 mm. What is wrong here?

The problem is that the large-aperture example chosen does not satisfy the
Fraunhoffer requirement that the distance to the viewing plane must be much
larger than the aperture diameter squared divided by the wavelength (see Part
13, equation 13.7). Specifically, for this case, the viewing distance would need to
be much greater than 700 meters in order to see the proper Fraunhoffer pattern

For the circular hole aperture, the
diffraction pattern will be a central
bright patch surrounded by concentric
light and dark rings that rapidly
decrease in visibility with increasing
distance from the center.

The predictions compare well with
laboratory observations.

The central bright patch of the
diffraction pattern:
• is called the Airy disc,
• provides a metric for predicting the

resolution of optical systems,
• is related to the size of laser speckles,
• has many other applications.
• is a function of:

• aperture size
• distance to the observing plane
• wavelength.

The relation between aperture size and
the breadth of the diffraction pattern is
inverse.
• Small apertures give a large central

patch.
• Wide apertures give a small central

patch.

If the aperture is large, laboratory
observations do not seem to agree with
the prediction that the diffraction
pattern should be small. We see the
‘‘shadow’’ of the aperture plate on a
viewing screen.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

from a 20 mm aperture. This aspect of the Fraunhoffer approximation, which led
us to the useful Fourier transform result, is easy to forget; and the forgetting can
cause much trouble. It is a problem that is inherent in most treatments of sub-
jects such as moire interferometry and holography that involve diffraction by
gratings of broad extent.

THE NEXT STEP
The question then arises as to how one might create within the limits of a lab-
oratory of finite size a diffraction pattern from a broad spatial signal such as a
photograph. The answer is to use a lens that causes the nearly collimated dif-
fracted beam to converge more quickly. This idea will be studied presently, as
will its application in optical spatial filtering. �

The problem is that, for the large
aperture, the diffraction pattern must
be observed several hundreds of meters
away in order to satisfy the
Fraunhoffer restrictions.


