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OPTICAL METHODS Back to Basics by Gary Cloud

Optical Methods in Experimental Mechanics
Part 13: Diffraction Theory, Part III

REVIEW AND PURPOSE
Part 12 developed the Kirchhoff diffraction integral, also called the Fresnel-
Kirchhoff formula, giving the complex amplitude anywhere in the region down-
stream from a diffraction screen that is illuminated by a point source. The Kirch-
hoff diffraction integral can be evaluated for certain simple apertures and
wavefronts, but it proves unwieldy for most practical applications.

This third article on diffraction theory develops some approximations that sim-
plify the integral so it can be used to explain the great majority of diffraction
phenomena that are observed and employed in the laboratory. Before taking on
that task, an aperture transmittance function is incorporated into the integral
equation to facilitate solutions when some intelligence, such as an optical element
or a transparency, is included in the aperture.

INCLUSION OF A SIGNAL IN THE APERTURE
A common situation in optical data processing applications is that the diffracting
screen usually contains some sort of signal or intelligence, often in the form of a
transparency that modifies the amplitude, phase, and/or intensity distribution
of the illumination beam as it passes through the aperture. The easiest way to
manage this problem is to define an aperture transmittance function T(�,�),
which might be a complex function, so that the complex amplitude U1 at the
aperture is the complex amplitude of the source (see Part 12, Eq. 12.1), evaluated
at the aperture, times the transmittance function. From now on, � and � repre-
sent coordinates in the plane of the aperture and serve as dummy variables for
the integration, and x,y, and z remain as global coordinates The derivation of the
Fresnel-Kirchhoff equation does not change except that the transmittance func-
tion enters the integral as a multiplier to give, for example,

Ai 1 ik(r �r )1 2U � � �� T(�,�) e (cos � � cos � )d�d� 13.1p 1 22� r r1 2aperture

GENERAL PLAN OF ATTACK
As mentioned, the Fresnel-Kirchhoff integral is difficult to evaluate for even sim-
ple apertures and transmittance functions. The reason is that r1 and r2 as well
as the obliquity factors cos �1 and cos �2 vary as the integration element roams
over the aperture, and relationships between these quantities must be estab-
lished before the integration can be performed. A better approach is to develop
some approximations that simplify the integral and facilitate useful solutions for
important classes of diffraction problems.

The basic approach to these simplifications is to accept certain limitations on the
geometry of the setup, then write corresponding approximations for the position
variables. The result is that certain terms in the integral can be dropped entirely
and others can be moved outside the integral as constants that do not depend on
the location of the integration element.

Editor’s Note: Optical Methods: Back to Basics, is organized by ET Senior Technical Editor, Kristin Zim-
merman, General Motors, and written by Prof. Gary Cloud of Michigan State University in East Lansing, MI.
The series began by introducing the nature and description of light and will evolve, with each issue, into topics
ranging from diffraction through phase shifting interferometries. The intent is to keep the series educationally
focused by coupling text with illustrative photos and diagrams that can be used by practitioners in the class-
room, as well as in industry. Unless noted otherwise, graphics in this series were created by the author.

The series author, Prof. Gary Cloud (SEM Fellow), is internationally known for his work in optical measurement
methods and for his recently published book Optical Methods of Engineering Analysis.

If you have any comments or questions about this series, please contact Kristin Zimmerman, Kristin.b.
Zimmerman@gm.com.

Family Portrait-Hubble Space
Telescope NICMOS image of NGC
2264 IRS mother star and baby stars
in the Cone Nebula. The rings and
spikes emanating from the image form
diffraction patterns that demonstrate
near-perfect optical performance of the
camera. Portion of image no. STScI-
PRC1997-16. Image by R. Thompson,
M. Rieke, and G. Schneider of
University of Arizona and NASA.

The purposes of this article are to:
• incorporate a signal that might be

included in the aperture,
• simplify the diffraction integral for

practical applications.

A transmittance function is included in
the diffraction integral.
• The complex amplitude exiting the

aperture is the complex amplitude
from the source times the
transmittance function.

• It might be a complex function.
• It can modify the phase or amplitude

distributions, or both.
• It is defined in local aperture

coordinates.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

The mathematical development of these approximations is tedious but not pro-
found. Neither does the development involve much physical insight or require
physical argument beyond geometry. In order to avoid unprofitable complexity,
the problem is reduced to two dimensions; extension to three dimensions being
intuitively obvious. Much manipulative detail is omitted, and some sign issues
remain unresolved in this compact treatment. Note also that, throughout this
series on diffraction, attributions to the leading scholars and the naming of de-
velopments after them are not necessarily supported by history or convention.

The first of the simplifying modifications is called the Fresnel approximation. It
gives a result that is tractable and quite general in application but still difficult
to use. The second, called the Fraunhoffer approximation, is more severe in its
limitations, less general, but simple and sufficient for most applications.

THE FRESNEL APPROXIMATION
The second figure from Part 12 of this series is now modified by introducing the
aperture coordinates mentioned above (actually only one of them, since we are
in two dimensions), and incorporating some additional position variables, namely
the line QP and the position vectors and The origins for both the globalr� r�.1 2
coordinate system (x,z) and the local coordinate � are chosen to be at the same
point somewhere in the aperture.

x
screen with
aperture

Q(x ,z )1 1

P(x ,z )2 2

r2

r1

r �1 �2

�
�1

Element of
aperture area
ds = d

z

origin of global
and local
coordinates

r �2

Now, assume that the points P and Q are ‘‘far’’ removed from a ‘‘small’’ aperture.
If far enough away in comparison with the aperture size, then, for any given
location of P and Q,

• The factor that appears in the diffraction integral can be replaced by
1

r r1 2

the constant and moved outside the integral. The primed distances are
1

r� r�1 2
to the origin of the global coordinates rather than to the integration element.

• The factor (cos �1 � cos �2) in the integral will not change much as the
area element d� wanders around in the aperture. So, this factor can be
replaced by the constant 2cos � and moved outside. � is the angle between
the normal to the aperture and the line QP. To clarify this point, one can
replace the variable angles �1 and �2 with the constant angles (for given P
and Q) that and make with the z-axis, but this measure seems unnec-r� r�1 2
essary.

To simplify the integral, certain
limitations on the geometry are
accepted.

The Fresnel approximation:
• assumes that the source and

receiving points are ‘‘quite far’’ from
the aperture,

• assumes that the aperture is ‘‘quite
small,’’

• allows some location variables inside
the integral to be replaced by
constants,

• greatly simplifies the integral.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

• But, the (r1 � r2) appearing in the exponent inside the integral cannot be
replaced by � because the exponential oscillates rapidly as the inte-(r� r�)1 2
gration element ranges over the aperture.

With these substitutions in place, the diffraction integral becomes much simpler,

Ai cos � ik(r �r )1 2U � � � T(�)e d� 13.2p � r� r�1 2 aperture

Further important simplification of the exponential in the integrand is achieved
by adoption of reasonable approximations to r1 and r2. Let us outline the process
for only one of the quantities.

1 / 22 2x � 2�x1 12 2 1 / 2r � [(x � �) � z ] � z 1 � � � 13.3� �1 1 1 1 2 2 2z z z1 1 1

Invoke the assumption already made that the observing and source points are
far enough from a small aperture to claim that z1 �� �x1 � x�, then use the
binomial expansion,

ε1 / 2(1 � ε) � 1 � � � � � 13.3
2

to expand equation 13.3, then retain only the first terms to obtain,
2 2x � x �1 1r � z � � � 13.41 1 2z 2z z1 1 1

Substitute this approximation for r1 and the equivalent expression for r2 into the
integral of equation 13.2, then move everything not containing the aperture vari-
able � outside the integral and rearrange a bit to obtain,

2 2 2ik x x � 1 1 x � x �1 2 1 2Ai cos � � ik � �ik �� � � � � �ik(z �z )1 2 2 z z 2 z z z z1 2 1 2 1 2U � � e e � T(�)e e d� 13.5p � r� r�1 2 aperture

This result is the Fresnel approximation to the Kirchhoff diffraction integral. It
is not as forbidding as it looks. Most of the expressions outside the integral,
including the sign, can be collected into a constant, a measure that is introduced
in the next section. This form of the integral is also very powerful, since the
simplifying assumptions made so far are not very limiting. It is still more un-
wieldy than is necessary for most practical applications, so we venture one step
further.

THE FRAUNHOFFER APPROXIMATION
A simpler and more useful result imposes the stringent condition that the ex-
ponential

2ik� 1 1
�� �2 z z1 2e

be near enough to unity for the full range of � encountered so that it may be
dropped. A convenient but arbitrary implementation that gives a tidy result is
to require that the exponent be much smaller than something already smaller
than one for all possible values of �.

2�� 1 1 �
� �� 13.6� �

� z z 41 2

At this point, take the maximum size of the aperture to be w, meaning that,

w
� �max 2

Substitution into eq. 13.6 gives the Fraunhoffer limitation in terms of easily de-
fined quantities, although the meaning of ‘‘much less than’’ must be explored.

The integrand is further modified by
replacing the geometric factors in the
exponential with equivalent series
expansions.

The diffraction integral is now much
simpler, but it is still too unwieldy for
practical applications.

The Fraunhoffer approximation:
• requires that the source and receiving

points are ‘‘very far’’ removed from
the aperture,

• requires the aperture to be ‘‘very
small,’’

• eliminates one of the difficult
exponential expressions from the
integrand,

• places severe physical restrictions on
the application of the integral,

• reduces the integral to one that is
easily evaluated for many
applications,

• proves very useful, even with its
inherent restrictions.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

1 1 �
� �� 13.72z z w1 2

Implied is that the source and receiving points must be ‘‘very far removed’’ from
a ‘‘very small’’ aperture. This restriction is severe in physical terms, and its im-
plications are not widely acknowledged. But it is satisfied ‘‘reasonably well’’ in
many useful applications. More will be said about these limitations presently.

With the restrictions described above in place, and after lumping the geometric
constants and rearranging a bit, the diffraction integral of equation 13.5 reduces
to the Fraunhoffer approximation,

2 2ik x x x x1 2 1 2
� �ik � �� � � �2 z z z z1 2 1 2U � Ce � T(�)e d� 13.8p

aperture

The integral is recognized as a Fourier transform of the aperture transmittance
function, and it is often written as,

2 2ik x x1 2
�� �2 z z1 2U � Ce F{T(�)} 13.91 x xp 1 2f� �� �

� z z1 2

The leading exponential contains inclination factors that are often ignored. The
long subscript appended to the transform symbol specifies the ‘‘spatial frequency’’
or dimension metric in transform space. Physically, the x /z terms are angular
deviations from the optical axis (tangent �), the restriction to small angles having
already been imposed.

SUMMARY
Diffraction at an aperture is a Fourier transforming process that decomposes
optical information (e.g. a picture) into its constituent space-frequency compo-
nents (e.g. lines per millimeter) that appear at some distance downstream from
the aperture. Spatial frequencies in the input plane are translated into illumi-
nation at corresponding distances off-axis in the transform pattern. The relative
strengths (intensities) of the illumination patches in the transform pattern cor-
respond to the relative weights of the individual spatial frequency components
in the original signal.

That an aperture is a physical Fourier transforming device, or spectrum analyzer,
is thought-provoking, powerful and far-reaching. All of our mathematical lore
about Fourier transforms can be called into service. Most of us have been intro-
duced to transforms of time-varying signals. Substitute space (distance) for time,
and our learning transfers to the optical domain. Applications include optical
data processing, moire interferometry, and holography, to name only a few.

WHAT NEXT?
In order to fix and test our findings, the Fraunhoffer approximation of the dif-
fraction integral will be applied to some simple cases that are easily reproduced
in the laboratory. �

The diffraction integral becomes the
Fourier transform of the aperture
function.

Diffraction at an aperture decomposes
optical information (e.g. a picture) into
its constituent space-frequency
components (e.g. lines per millimeter).

Distance in a transform plane is
proportional to spatial frequency in the
aperture signal.

An aperture is a physical Fourier
transformer.


