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OPTICAL METHODS Back to Basics by Gary Cloud

Optical Methods in Experimental Mechanics
Part 12: Diffraction Theory, Part II

REVIEW AND PURPOSE
Part 11 of this series developed the Helmholtz-Kirchhoff formula that gives the
complex amplitude at a point inside a vessel in terms of the complex amplitude
distribution on the surface of the vessel.

The objective of this article is to modify and simplify the integral solution so that
we approach an answer to the fundamental question, ‘‘If light is passed through
an aperture, which might contain an optical element, what is the nature of the
light field beyond the aperture?’’

THE KIRCHHOFF ASSUMPTIONS
Refer to the first illustration and the final equation (eq. 11.10) in the preceeding
article. Evaluation of the surface integral requires knowledge of the complex am-
plitude and its normal gradient on the entire inside surface of the vessel, as well
as the location of the point at which the complex amplitude UP is to be evaluated.
One of the many problems involved in this general solution is that reflections
inside the vessel should be considered.

Kirchhoff greatly simplified the problem by realizing that most of the vessel is
not important. Only the information contained in the illuminated hole in the
vessel is critical. So, he eliminated all but the aperture from consideration by
assuming that the vessel is very large, very dark, and very nonreflective. Think
of a huge box lined with black velvet but with a small hole in one side. The
implications are that:

• U1 � 0 and � 0 on the inside surface of the vessel except at the aper-
�U1

�n
ture.

• U1 takes on the same values in the aperture as it would have if the vessel
did not exist.

The assumption and its implications are serious and subject to question, and they
are aspects of the theory that were refined later by Sommerfield. They do, how-
ever, lead us to solutions that have practical value and that can be verified by
experiments.

The implications infer that the Helmholtz-Kirchhoff integral over the entire sur-
face is zero except for the part that serves as the aperture. Accordingly, the in-
tegration needs to extend only over the domain of the aperture. Therefore, if the
nature and position of the radiation source is known relative to the aperture, if
the characteristics of the aperture are known, and if the position of the receiving
point is known or specified in general form, then the Helmholtz-Kirchhoff integral
can be evaluated, at least in principle.

Editor’s Note: Optical Methods: Back to Basics, is organized by ET Senior Technical Editor, Kristin Zim-
merman, General Motors, and written by Prof. Gary Cloud of Michigan State University in East Lansing, MI.
The series began by introducing the nature and description of light and will evolve, with each issue, into topics
ranging from diffraction through phase shifting interferometries. The intent is to keep the series educationally
focused by coupling text with illustrative photos and diagrams that can be used by practitioners in the class-
room, as well as in industry. Unless noted otherwise, graphics in this series were created by the author.

The series author, Prof. Gary Cloud (SEM Fellow), is internationally known for his work in optical measurement
methods and for his recently published book Optical Methods of Engineering Analysis.

If you have any comments or questions about this series, please contact Kristin Zimmerman, Kristin.b.
Zimmerman@gm.com.

Transmission Laue X-ray diffraction
pattern as used to identify crystal
structure and orientation.
Courtesy of Dr. K. N. Subramanian,
Michigan State University.

The Helmholtz-Kirchhoff integral is to
be modified so that it can be applied
with ease to useful diffraction
problems.

Kirchhoff greatly simplified the
problem by assuming that the aperture
is a hole in a vessel that is large, dark,
and nonreflective, implying that:
• The complex amplitude and its

normal derivative are zero on the
inside vessel surface.

• There are no reflections or edge
effects that modify the complex
amplitude at the aperture.

• The diffraction integral reduces to a
constant � zero everywhere but in
the region of the aperture.

• The integral needs to be evaluated
only over the extent of the aperture.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

THE KIRCHHOFF DIFFRACTION INTEGRAL
The isometric sketch below establishes the geometry of the problem, including
the definitions of the position vectors r1 and r2 for the source point and receiving
point relative to a small element within the aperture. The two-dimensional illus-
tration clarifies the parameters and defines the two direction angles, �1 and �2,
taken from a positive z�-axis through the aperture element, for the position vec-
tors.
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Screen with
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Suppose that U1 comes from a point source Q at distance r1 and inclination �1
from the integration element ds � dxdy that lies within the aperture, as shown
in the sketches. The aperture is considered to be planar, because eventually it
will be taken to be very small relative to the other dimensions involved. Also, the
assumption of a point source is not unduly restrictive because an extended source
can be viewed as an array of point sources. The complex amplitude falling on the
receiving point P at distance r2 and inclination �2 from the origin is sought.

The light coming from the point source and incident on the aperture screen can
be taken to be a spherical wavefront (see Part 11),

ikr1Ae
U � 12.11 r1

The normal to the aperture is the z�-axis, so,

ikr1�U �U e 11 1� � A ik � cos� 12.2� � 1�n �z r r1 1

Likewise, the derivative of U2 that appears in the integral is,

ikr ikr ikr2 2 2� e � e e 1
� � A ik � cos� 12.3� � � � � � 2�n r �z r r r2 2 2 2

The positions of the source and
receiving points are established with
respect to an integration element ds in
the aperture.

A point source outside the vessel is
assumed to illuminate the aperture
with a spherical wavefront.

The complex amplitude falling upon a
receiving point inside the vessel is
sought.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

A serious but practical assumption is now imposed. Recall that k � meaning
2�

,
�

it is a large number (�105 cm�1 for visible light). If the source and receiving
points are assumed to be somewhat distant (meaning more than a centimeter or
so) from the aperture screen, and if the aperture is not too large, then,

1 1
�� k and �� k 12.4

r r1 2

and so can be dropped.

The results developed above are substituted into the Helmholtz-Kirchhoff for-
mula to obtain,

Aik 1 ik(r �r )1 2U � � �� e (cos� � cos� )dxdy 12.5p 1 24� r r1 2aperture

Ai 1 ik(r �r )1 2U � � �� e (cos� � cos� )dxdy 12.6p 1 22� r r1 2aperture

These equations are slightly different forms of the Kirchhoff diffraction integral,
also called the Fresnel-Kirchhoff formula, giving the complex amplitude any-
where in the region downstream from a diffraction screen that is illuminated by
a point source.

At this point, we see that the diffraction problem reduces to some sort of integral
transform, which is encouraging.

THE NEXT STEP
The Kirchhoff diffraction integral can be evaluated for certain simple apertures
and wavefronts, but it proves unwieldy for most practical applications. The rea-
son is that the distances r1 and r2, as well as the cosines of the direction angles,
vary widely as the integration element ds wanders inside the aperture. General
relationships between these variables must be found before the integration can
be carried out, and this task is usually forbidding.

A better approach is to develop some approximations that simplify the integral
and yet supply reasonable solutions for practical diffraction problems. These ap-
proximations will be pursued in the third and final article on diffraction theory.
At the same time, an aperture transmittance function will be incorporated into
the integral equation to facilitate solutions when some intelligence, such as an
optical element or a transparency, is included in the aperture. �

If the source and receiving points are
more than a few centimeters from a
relatively small aperture, then certain
terms can be dropped from the
integral.

These simplifications reduce the
general diffraction integral to the
Kirchhoff integral, also called the
Fresnel-Kirchhoff formula, giving the
complex amplitude anywhere in the
region downstream from a diffraction
screen that is illuminated by a point
source.

The Kirchhoff diffraction integral:
• can be evaluated for certain simple

cases,
• is difficult to evaluate for problems of

practical importance,
• must be simplified further through

development of some approximations,
• needs to be modified to account for

the case where some intelligence, such
as a transparency, is placed in the
aperture.


