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OPTICAL METHODS Back to Basics by Gary Cloud

Optical Methods in Experimental Mechanics
Part 11: Diffraction Theory, Part I

REVIEW AND PURPOSE
Part 9 of this series gave some examples of diffraction phenomena drawn from
more-or-less everyday experience. Many higher-level scientific examples could be
cited, and all of these convince us that understanding the diffraction problem and
its solution is important.

Part 9 also stated the fundamental question in its simplest form, ‘‘If light is
passed through an aperture, which might contain an optical element, what is the
nature of the light field beyond the aperture?’’

Part 10 developed the concept of ‘‘complex amplitude,’’ which is a descriptor that
is convenient for describing the nature and propagation of light waves.

The objective of this article is to derive the Helmholtz-Kirchhoff equation that
gives the optical complex amplitude at a point in terms of the complex amplitude
that is distributed over a surface around the point. The result is critical to the
development and understanding of diffraction theory.

A pedagogical problem is to find an acceptable balance between key concepts,
mathematical detail, and physical understanding. More mathematics are pre-
sented here than is typical for these articles, because important physical reason-
ing is tightly woven into the evolution of the theory.

THE HELMHOLTZ-KIRCHHOFF EQUATION
First, the problem is restated in a slightly different way. Given the complex am-
plitude on the inside surface of a vessel, what is the complex amplitude at some
observing point P inside the vessel?

The solution begins in a way that is beguilingly indirect, which is to say it hardly
seems related to the problem. Recall Stokes’s theorem for two well-behaved func-
tions U1 and U2 that are defined in a volume V surrounded by surface S, as shown
in the figure below. Stokes’s theorem relates certain surface and volume integrals
containing the functions.

volume V

surface S

n
P

2 2��� (U � U � U � U ) dv � �� (U �U � U �U ) � n ds 11.11 2 2 1 1 2 2 1

V S

where n is the unit vector normal to the surface, �2 is the Laplace operator, and

Editor’s Note: Optical Methods: Back to Basics, is organized by ET Senior Technical Editor, Kristin Zim-
merman, General Motors, and written by Prof. Gary Cloud of Michigan State University in East Lansing, MI.
The series began by introducing the nature and description of light and will evolve, with each issue, into topics
ranging from diffraction through phase shifting interferometries. The intent is to keep the series educationally
focused by coupling text with illustrative photos and diagrams that can be used by practitioners in the class-
room, as well as in industry. Unless noted otherwise, graphics in this series were created by the author.

The series author, Prof. Gary Cloud (SEM Fellow), is internationally known for his work in optical measurement
methods and for his recently published book Optical Methods of Engineering Analysis.

If you have any comments or questions about this series, please contact Kristin Zimmerman, Kristin.b.
Zimmerman@gm.com.

Arcade Pinhole camera image of
shopping arcade taken using a pinhole
camera. Note extraordinary depth of
field and sharpness obtained by
‘‘lensless photography.’’ Image by Mr.
Andrew T. Smith, 2003.*

We seek to relate the optical complex
amplitude at a point to the complex
amplitude field that surrounds the
point.

Restate the problem. Given the complex
amplitude on the surface of a vessel,
what is the complex amplitude at any
observation point P inside the vessel?

Use Stokes’s theorem, which relates
certain surface and volume integrals
containing two functions that are
defined in the vessel.

*Image copyright by Mr. Andrew T. Smith of Mel-
bourne, Australia; used with his permission. Exposure
30 seconds at f 199 using 100ASA color negative film
in 6cm x 6cm format. In the picture, you can see some
ghostly images of people who wandered past during
the exposure. A larger version of this picture and ad-
ditional fine images by Mr. Smith and other artists
may be found at the Pinhole Gallery website mentioned
at the end of this article.

� is the vector gradient operator.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

Since we are working with light waves, the functions U1 and U2 can be taken to
be complex amplitudes as were discussed in Part 10 of this series. The implication
is that these functions are solutions of the wave equation, so the entire volume
integral on the left hand side of equation 11.1 is zero.

Further, since

�Ui�U � n � 11.2i �n

the surface integral in equation 11.1 reduces to a simple form, and Stokes’s equa-
tion becomes, for this case,

�U �U2 1�� U � U ds � 0 11.3� �1 2�n �n
S

Imagine that U1 is a complex amplitude that exists inside the volume. Later, we
will find that we need to know its values only on the surface, which is one of the
benefits from starting with Stokes’s theorem. For example, it might be zero eve-
rywhere except at some hole that is illuminated from outside the volume—in
other words, an illuminated aperture. If we can figure out what U2 is everywhere
inside the volume in terms of the known surface values of U1, then the problem
is solved. This cannot be done directly in general form, so the unknown complex
amplitude inside the surface is taken to be of the form of a spherical wavefront
that is centered at the general observation point P. A price paid for this simpli-
fication is that the actual complex amplitude at P might be the sum of many
such spherical waves, but that possibility causes us no difficulty in the end. The
main benefit of this step is that it puts P specifically into the solution. Let r2 be
the distance measured from point P, recall k is the wave number, and the spher-
ical wave complex amplitude is,

ikr2e
U � 11.42 r2

This complex amplitude is to be entered into the reduced Stokes’s equation and
the integral worked out. The trouble is that point P must be seen as another
surface, no matter how small, and the integral must include that surface. To
accomplish this, surround P with a small sphere of radius ε whose surface is
designated S2 and whose outward normal is n2, as shown in the following figure.
A more conventional view is to claim that P is a singular point and do the same
thing, but that rationale seems less than satisfactory here because no volume
integral is required. We need to introduce a second surface surrounding P, a
measure that causes the complex amplitude at P to appear explicitly in the result.

If the reasoning outlined above seems tedious and unsatisfactory, the problem
may be restated as follows. Given the complex amplitude on the surface of the
surrounding vessel, predict the complex amplitude on the surface of a small
sphere located somewhere inside the vessel. Since the sphere is tiny, the as-
sumption of a spherical wave form is reasonable.

P

s1

s2
n1

n2

ε

The integral is now evaluated for both of the surfaces S1 and S2 with the adopted
expression for U2 and with the radius of S2 vanishingly small. Evaluate first the
integral over the outside surface, which becomes,

The two functions are taken to be
complex amplitudes of optical waves.

Because the complex amplitudes are
solutions of the wave equation, the
entire volume integral portion of
Stokes’s theorem vanishes.

The second complex amplitude is taken
to be a spherical wave centered at the
observing point P.

In order to evaluate the surface
integral of Stokes’s theorem:
• a second surface is taken to surround

P
• this surface is a sphere
• the radius of the sphere is

vanishingly small.
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

ikr ikr2 2� e e �U1�� U � dS 11.5� � � � � �1 1�n r r �n1 2 2 1S1

The integral for the inside sphere is simplified by first realizing that �
� �

,
�n �r2 2

which allows evaluation of the partial derivative of the adopted expression for
U2. This integral becomes,

ikr2ik 1 e �U1ikr ikr2 2�� U e � e � dS 11.6� � � �1 22r r r �n2 2 2 2S2

Now, take r2 � ε, meaning dS2 � ε2 d�, where d� is the element of solid angle
subtended by the element dS2. The second integral becomes,

4� ikεik 1 e �U1ikε 2� U e � � ε d� 11.7� � � �1 20 ε ε ε �n2

Since the sphere surrounding P is very small, U1 cannot vary appreciably on this
surface because it is smooth and analytical. So, the entire first expression inside
the integral can be taken as near-enough a constant. That portion can be inte-
grated, giving the intermediate result,

ikεe 1 �U12 ikε�4�ε U ik � � ε � e d� 11.8� �1 ε ε �n2

It might seem that ground has been lost, but success is near. Although U1 might
be large, its normal derivative is bounded. Therefore, the integral remaining in
equation 11.8 is finite, and the entire final expression tends to zero as ε ap-
proaches zero. Further, as ε is diminished, the first expression in equation 11.8
becomes,

4�U � � 4�U 11.91 at r �0 P2

Join this result with the value of the integral over the outside surface (eq. 11.5)
to obtain,

ikr ikr2 21 � e e �U1U � �� U � ds 11.10� � � �P 14� �n r r �n2 2S

This important result is known as the Helmholtz-Kirchhoff equation. It gives the
complex amplitude at a point in terms of the values of the complex amplitude on
a surface surrounding the point.

A subtle but interesting point is that we did not evaluate U2 at P as we might
have thought was the objective. A form for U2 was adopted, and we ended up
evaluating U1 at P. View U1 and U2 as different names for the same complex
amplitude to clear up this puzzle.

THE NEXT STEPS
The Helmholtz-Kirchhoff equation solves the problem, but it is of limited prac-
tical use because of the difficulty of evaluating the integral. The next two articles
will press onward with the introduction of some assumptions and approximations
that simplify the integral and make it useful.

AUTHOR’S NOTE
Only a few days after the appearance of Part 10, which contained some comments
about the camera obscura, I learned from an article in the local newspaper that
this phenomenon was known in China around the fifth century B.C.E. I should
have known. An interesting web site about the camera obscura is at www.
pinhole.org. �

The surface integral is evaluated over
the two surfaces, using the adopted
spherical wave front for the second
function.

Since the functions are well-behaved,
the integral over the surface of the
small sphere surrounding the
observing point reduces to a constant
times the complex amplitude at the
point.

The resulting integral relationship:
• is known as the Helmholtz-Kirchhoff

equation
• relates the complex amplitude at an

observing point inside a vessel to the
values that the complex amplitude
has on the surface of the vessel

• is difficult to evaluate for practical
problems.




