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OPTICAL METHODS Back to Basics by Gary Cloud

Optical Methods in Experimental Mechanics
Part 10: Complex Amplitude

REVIEW AND PURPOSE
In this series of articles, emphasis is on the physical phenomena that undergird
optical methods of measurement, so mathematical manipulation is being held to
a minimum. As we begin study of the diffraction problem, however, and then go
on to consider more complex optical techniques, we require a way to deal with
light waves that is more compact and less unwieldy than the trigonometric ap-
proach used so far. This need is satisfied by a descriptor called the ‘‘complex
amplitude.’’

WAVE NUMBER
Extract from Part 1 of this series (May/June 2002) the expression that represents
the electric vector for a single wave traveling in the z-direction. Change the sign
in the argument, which makes no difference to the meaning,

2�
E � A cos [�t � z] 10.1� �

�

where A � a vector giving the amplitude and polarization direction of the wave,
� � the wave length,
� � the wave velocity.

This equation is easily generalized for a wave propagating along some axis spec-
ified by unit vector � having directions l, m, n in Cartesian space. Italic bold type
distinguishes the unit vectors.

� � li � mj � nk 10.2

The wave traveling in the � direction can be written as,

2�
E � A cos [�t � (lx � my � nz)] 10.3� �

�

A general position vector locating some arbitrary point in space is,

r � xi � yj � zk 10.4

so the equation for a wave traveling in the specified direction can be written with
a dot product term that contains wavelength and direction,

E � A cos(�t � k � r) 10.5

where k � vector wave number � k� �
2��

�

� � angular frequency of radiation � � 2��
2��

�
� � optical frequency, Hz

Editor’s Note: Optical Methods: Back to Basics, is organized by ET Senior Technical Editor, Kristin Zim-
merman, General Motors, and written by Prof. Gary Cloud of Michigan State University in East Lansing, MI.
The series began by introducing the nature and description of light and will evolve, with each issue, into topics
ranging from diffraction through phase shifting interferometries. The intent is to keep the series educationally
focused by coupling text with illustrative photos and diagrams that can be used by practitioners in the class-
room, as well as in industry. Unless noted otherwise, graphics in this series were created by the author.

The series author, Prof. Gary Cloud (SEM Fellow), is internationally known for his work in optical measurement
methods and for his recently published book Optical Methods of Engineering Analysis.

If you have any comments or questions about this series, please contact Kristin Zimmerman, Kristin.b.
Zimmerman@gm.com.

Diffraction pattern created by passing
laser light through a pinhole. HeNe
laser. Central portion overexposed to
show the first few off-axis rings.
Digital photo by Gary Cloud, Dec.
2003.

We require a representation for light
waves that is easier to use than the
cosine-wave form for the electric vector.

The cosine wave is first generalized to
describe waves traveling in any
direction.

The cosine wave is then written in a
form that contains:
• the vector wave number, which

specifies:
• propagation direction
• wave length

• the angular frequency of the
radiation, which is related to:
• wavelength
• wave velocity
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

Caution: do not confuse the vector wave number k or its scalar counterpart k
with the unit vector k.

SCALAR COMPLEX AMPLITUDE
The representation of the wave in equation 10.5 is physically meaningful and
sufficient for many optical calculations. But, it tends to be cumbersome when
describing the propagation and interactions of waves in the more complicated
optical systems, such as those that are used for holographic interferometry. A
complex number representation is better, although more difficult to interpret.

Use the identity � cos � � i sin � to convert the electric vector to the equiv-i�e
alent exponential form. Only the cosine part is needed.

i[�t�k�r]E � Re Ae 10.6

Where ‘‘Re’’ means ‘‘real part of ’’ and i is often represented by j. Hence-��1,
forth, the ‘‘Re’’ will be understood to be applicable wherever it is appropriate, so
it is dropped from the equations.

Now, it is a simple matter to include a phase-angle term �, which is how we get
the entire path length (PL) or the path length difference (PLD) into the picture.
The phase angle could have been introduced into the cosine wave function above,
of course. Multiply the physical PLD by the wave number to convert it to phase
angle.

2�
� � (PLD) � k(PLD) 10.7

�

The expression for the electric vector with the PLD contained becomes,

i[�t�k�r��]E � Ae 10.8

This representation of the general wave can also be written as a product,

i�t i� �ik�rE � Ae e e 10.9

The first exponential in the above equation represents the oscillation at optical
frequencies. We have no way of tracking signals at these high frequencies, so it
makes sense to leave that term out. The amplitude data, the space variables,
and the phase are the only quantities of interest. Also, for interference to take
place, the polarization direction in a setup must be uniform, so we usually drop
the vector designations on the electric vector E and the amplitude vector A. What
is left is a much simplified representation of the wave that contains all the im-
portant information. It is called the scalar complex amplitude, U.

i� �ik�r i(��k�r)U � Ae e � Ae 10.10

In many instances, the amplitude and the phase angle are functions of location
in the coordinate system, so we would write A(x,y,z) and so on. As an example,
a bundle of waves traveling in the y direction and having amplitude and phase
varying with position could be expressed as,

i[�(x,y,z)�ky]U � A(x,y,z)e 10.11

Note that there is nothing implicit here that indicates the breadth of the wave
bundle. The same equation serves for just one wave or for a broad beam of many
waves.

A detail that often proves useful in optics calculations is that twice the real part
of a complex number is the sum of the complex number and its complex conjugate.
The factor of 2 is often absorbed in the other constants and does not usually
appear explicitly. An asterisk is used here to indicate complex conjugate.

U � U* � 2 Re(U ) 10.12

The cosine wave is converted to
exponential form, and:
• a phase term is introduced

• the phase term is the magnitude of
the vector wave number times the
PLD

• the part containing the optical
oscillation frequency is dropped, since
these frequencies are too large to be
observed

• The polarization specification is also
dropped.

What is left is the ‘‘complex amplitude’’
that contains as a function of position:
• amplitude of the wave
• phase
• wavelength
• propagation direction
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OPTICAL METHODS IN
EXPERIMENTAL MECHANICS

INTENSITY OR IRRADIANCE
We learned in Part 2 that the essence of interferometry is in determining invisible
phase quantities by converting them to palpable intensity or irradiance. The ir-
radiance is defined, somewhat arbitrarily, as twice the average over many optical
oscillations of the square of the magnitude of the electric vector. That is, where
T is several optical oscillation periods and where r represents the coordinates of
a point in space where the intensity is to be determined,

T2 2I(r) � � E (r,t)dt 10.13
0T

Taking the trigonometric form for a simple harmonic wave for example, and let-
ting � � represent the average over several oscillations,

2 2I(r) � 2A (r)�cos (�t � k � r � �(r))� 10.14

The time average over many periods of the cosine-squared function is just 1 /2,
so,

2I(r) � A (r) 10.15

Which is to say the irradiance at a point turns out to be the square of the am-
plitude at that point.

To establish the relationship between intensity and complex amplitude, write the
electric vector in terms of complex amplitude and its complex conjugate as men-
tioned in equation 10.12.

1 i�t �i�tE(r,t) � (Ue � U*e ) 10.16
2

Put this identity into the definition of intensity (equation 10.13 or 10.14), leave
an extra 1/2 out as is usual, and obtain,

2 i2�t 2 �i2�tI(r) � �U e � U* e � UU*� 10.17

Recognize that,

�i2�t�e � � 0 10.18

and the intensity reduces to,
2I(r) � UU* � �U � 10.19

This result shows that the intensity of a wave at a point is the square of the
modulus or amplitude of the complex amplitude at that point, which agrees with
the result of equation 10.15.

Interference and diffraction calculations require tracking the complex amplitude
through the system and then determining the intensity distribution in the field
by multiplying the resulting complex amplitude by its complex conjugate. Often,
the result is transformed back into trigonometric form to make it easier to in-
terpret. �

Intensity or irradiance is:
• defined as twice the long-time

average of the square of the
amplitude

• the quantity of interest since it is
what we can measure

Intensity at a point in the optical field
is found to equal the square of the
local amplitude.

Intensity is also found to equal:
• the local complex amplitude times its

complex conjugate
• the square of the modulus of the

complex amplitude.

Optical calculations involve:
• determining the complex amplitude

field as waves interact with optical
components and other waves

• converting the complex amplitude to
intensity distribution


